Normalized defining polynomial
\( x^{27} - 351 x^{25} + 54756 x^{23} - 5002569 x^{21} + 296891595 x^{19} - 11999818467 x^{17} + 336756810312 x^{15} - 6566757801084 x^{13} + 87614373819726 x^{11} - 773386139272890 x^{9} + 4258173096231912 x^{7} - 13210014264446727 x^{5} + 19081131715311939 x^{3} - 8177627877990831 x - 2175481232872831 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(79502042287804104995388608594472718525612115183651404436672117601=3^{94}\cdot 13^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $253.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1053=3^{4}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1053}(1,·)$, $\chi_{1053}(646,·)$, $\chi_{1053}(328,·)$, $\chi_{1053}(586,·)$, $\chi_{1053}(529,·)$, $\chi_{1053}(211,·)$, $\chi_{1053}(469,·)$, $\chi_{1053}(412,·)$, $\chi_{1053}(94,·)$, $\chi_{1053}(997,·)$, $\chi_{1053}(352,·)$, $\chi_{1053}(913,·)$, $\chi_{1053}(679,·)$, $\chi_{1053}(1030,·)$, $\chi_{1053}(796,·)$, $\chi_{1053}(295,·)$, $\chi_{1053}(937,·)$, $\chi_{1053}(235,·)$, $\chi_{1053}(178,·)$, $\chi_{1053}(61,·)$, $\chi_{1053}(880,·)$, $\chi_{1053}(562,·)$, $\chi_{1053}(820,·)$, $\chi_{1053}(118,·)$, $\chi_{1053}(763,·)$, $\chi_{1053}(445,·)$, $\chi_{1053}(703,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{13} a^{3}$, $\frac{1}{13} a^{4}$, $\frac{1}{13} a^{5}$, $\frac{1}{169} a^{6}$, $\frac{1}{169} a^{7}$, $\frac{1}{169} a^{8}$, $\frac{1}{2197} a^{9}$, $\frac{1}{2197} a^{10}$, $\frac{1}{2197} a^{11}$, $\frac{1}{28561} a^{12}$, $\frac{1}{28561} a^{13}$, $\frac{1}{300775891} a^{14} - \frac{2816}{300775891} a^{13} - \frac{14}{23136607} a^{12} + \frac{5015}{23136607} a^{11} + \frac{77}{1779739} a^{10} + \frac{486}{23136607} a^{9} - \frac{210}{136903} a^{8} + \frac{3046}{1779739} a^{7} - \frac{2969}{1779739} a^{6} + \frac{3467}{136903} a^{5} - \frac{1531}{136903} a^{4} + \frac{3792}{136903} a^{3} - \frac{2250}{10531} a^{2} - \frac{5055}{10531} a - \frac{4394}{10531}$, $\frac{1}{3910086583} a^{15} - \frac{15}{300775891} a^{13} - \frac{2816}{300775891} a^{12} + \frac{90}{23136607} a^{11} + \frac{2199}{23136607} a^{10} - \frac{275}{1779739} a^{9} - \frac{4630}{1779739} a^{8} - \frac{4681}{1779739} a^{7} + \frac{3537}{1779739} a^{6} - \frac{378}{10531} a^{5} - \frac{25}{136903} a^{4} + \frac{2598}{136903} a^{3} + \frac{1513}{10531} a^{2} - \frac{2535}{10531} a - \frac{4018}{10531}$, $\frac{1}{3910086583} a^{16} - \frac{2932}{300775891} a^{13} - \frac{120}{23136607} a^{12} + \frac{3707}{23136607} a^{11} + \frac{909}{23136607} a^{10} - \frac{245}{23136607} a^{9} - \frac{3507}{1779739} a^{8} - \frac{3428}{1779739} a^{7} - \frac{239}{136903} a^{6} - \frac{675}{136903} a^{5} + \frac{695}{136903} a^{4} + \frac{2832}{136903} a^{3} - \frac{4692}{10531} a^{2} + \frac{4405}{10531} a - \frac{2724}{10531}$, $\frac{1}{3910086583} a^{17} - \frac{136}{23136607} a^{13} - \frac{1007}{300775891} a^{12} + \frac{3613}{23136607} a^{11} - \frac{3462}{23136607} a^{10} - \frac{200}{23136607} a^{9} - \frac{4228}{1779739} a^{8} - \frac{2523}{1779739} a^{7} - \frac{4746}{1779739} a^{6} + \frac{3524}{136903} a^{5} + \frac{146}{136903} a^{4} - \frac{402}{136903} a^{3} - \frac{189}{10531} a^{2} + \frac{3664}{10531} a - \frac{3795}{10531}$, $\frac{1}{50831125579} a^{18} + \frac{71}{23136607} a^{13} - \frac{77}{300775891} a^{12} + \frac{499}{23136607} a^{11} + \frac{3268}{23136607} a^{10} - \frac{1318}{23136607} a^{9} - \frac{2079}{1779739} a^{8} + \frac{3992}{1779739} a^{7} - \frac{82}{1779739} a^{6} - \frac{4802}{136903} a^{5} + \frac{1563}{136903} a^{4} - \frac{496}{136903} a^{3} + \frac{1301}{10531} a^{2} - \frac{4067}{10531} a + \frac{2683}{10531}$, $\frac{1}{50831125579} a^{19} - \frac{2066}{300775891} a^{13} - \frac{4554}{300775891} a^{12} - \frac{2468}{23136607} a^{11} + \frac{1487}{23136607} a^{10} - \frac{1710}{23136607} a^{9} - \frac{3658}{1779739} a^{8} + \frac{237}{1779739} a^{7} + \frac{3087}{1779739} a^{6} + \frac{2946}{136903} a^{5} + \frac{1463}{136903} a^{4} + \frac{2658}{136903} a^{3} - \frac{1924}{10531} a^{2} + \frac{3215}{10531} a + \frac{1227}{10531}$, $\frac{1}{50831125579} a^{20} + \frac{1233}{300775891} a^{13} + \frac{201}{23136607} a^{12} - \frac{27}{23136607} a^{11} + \frac{2280}{23136607} a^{10} - \frac{1799}{23136607} a^{9} + \frac{4673}{1779739} a^{8} - \frac{1415}{1779739} a^{7} + \frac{1793}{1779739} a^{6} + \frac{3205}{136903} a^{5} - \frac{1088}{136903} a^{4} - \frac{4742}{136903} a^{3} - \frac{1114}{10531} a^{2} + \frac{4349}{10531} a - \frac{282}{10531}$, $\frac{1}{660804632527} a^{21} - \frac{4088}{300775891} a^{13} - \frac{3827}{300775891} a^{12} - \frac{773}{23136607} a^{11} + \frac{3750}{23136607} a^{10} + \frac{3132}{23136607} a^{9} + \frac{4457}{1779739} a^{8} + \frac{434}{1779739} a^{7} - \frac{1964}{1779739} a^{6} + \frac{786}{136903} a^{5} + \frac{651}{136903} a^{4} + \frac{3764}{136903} a^{3} - \frac{932}{10531} a^{2} - \frac{950}{10531} a - \frac{4486}{10531}$, $\frac{1}{660804632527} a^{22} - \frac{404}{23136607} a^{13} + \frac{4167}{300775891} a^{12} + \frac{1213}{23136607} a^{11} - \frac{103}{1779739} a^{10} + \frac{1695}{23136607} a^{9} + \frac{3054}{1779739} a^{8} + \frac{2442}{1779739} a^{7} + \frac{4658}{1779739} a^{6} - \frac{979}{136903} a^{5} + \frac{450}{136903} a^{4} - \frac{117}{10531} a^{3} + \frac{5144}{10531} a^{2} + \frac{3027}{10531} a + \frac{3214}{10531}$, $\frac{1}{660804632527} a^{23} + \frac{59}{300775891} a^{13} - \frac{2836}{300775891} a^{12} - \frac{590}{23136607} a^{11} + \frac{306}{1779739} a^{10} + \frac{1548}{23136607} a^{9} - \frac{2827}{1779739} a^{8} - \frac{4870}{1779739} a^{7} + \frac{79}{136903} a^{6} + \frac{1035}{136903} a^{5} + \frac{3351}{136903} a^{4} + \frac{5149}{136903} a^{3} + \frac{1809}{10531} a^{2} + \frac{3005}{10531} a - \frac{3867}{10531}$, $\frac{1}{8590460222851} a^{24} + \frac{411}{300775891} a^{13} + \frac{236}{300775891} a^{12} + \frac{2658}{23136607} a^{11} - \frac{5234}{23136607} a^{10} + \frac{2258}{23136607} a^{9} - \frac{2566}{1779739} a^{8} - \frac{1594}{1779739} a^{7} - \frac{3312}{1779739} a^{6} - \frac{4136}{136903} a^{5} + \frac{2484}{136903} a^{4} + \frac{4041}{136903} a^{3} + \frac{3152}{10531} a^{2} - \frac{3278}{10531} a - \frac{1120}{10531}$, $\frac{1}{8590460222851} a^{25} - \frac{798}{300775891} a^{13} + \frac{4046}{300775891} a^{12} - \frac{2323}{23136607} a^{11} + \frac{1556}{23136607} a^{10} - \frac{1422}{23136607} a^{9} + \frac{4150}{1779739} a^{8} - \frac{2029}{1779739} a^{7} - \frac{2450}{1779739} a^{6} - \frac{768}{136903} a^{5} + \frac{1422}{136903} a^{4} - \frac{1072}{136903} a^{3} - \frac{5256}{10531} a^{2} + \frac{1878}{10531} a + \frac{5133}{10531}$, $\frac{1}{8590460222851} a^{26} - \frac{19}{300775891} a^{13} + \frac{3592}{300775891} a^{12} + \frac{1746}{23136607} a^{11} - \frac{2980}{23136607} a^{10} - \frac{524}{23136607} a^{9} - \frac{652}{1779739} a^{8} - \frac{4403}{1779739} a^{7} + \frac{760}{1779739} a^{6} - \frac{1565}{136903} a^{5} - \frac{1214}{136903} a^{4} - \frac{1523}{136903} a^{3} - \frac{3352}{10531} a^{2} + \frac{4616}{10531} a + \frac{411}{10531}$
Class group and class number
Not computed
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 27 |
| The 27 conjugacy class representatives for $C_{27}$ |
| Character table for $C_{27}$ is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $27$ | R | $27$ | $27$ | $27$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{3}$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{3}$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{9}$ | $27$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 13 | Data not computed | ||||||