Normalized defining polynomial
\( x^{27} - 9 x^{26} - 117 x^{25} + 1077 x^{24} + 6363 x^{23} - 55647 x^{22} - 218118 x^{21} + 1616472 x^{20} + 5247171 x^{19} - 28705768 x^{18} - 90158310 x^{17} + 315512154 x^{16} + 1076463318 x^{15} - 2036139291 x^{14} - 8535335625 x^{13} + 6189476667 x^{12} + 42360771069 x^{11} + 3486053466 x^{10} - 120399207328 x^{9} - 77931984402 x^{8} + 167444847135 x^{7} + 186039613671 x^{6} - 81038691729 x^{5} - 162267197085 x^{4} - 14975802189 x^{3} + 44317649232 x^{2} + 9431461404 x - 2809696843 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7806116202371923778076833319704235358304327213604702954864321=3^{66}\cdot 43^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $180.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1161=3^{3}\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1161}(1,·)$, $\chi_{1161}(130,·)$, $\chi_{1161}(259,·)$, $\chi_{1161}(388,·)$, $\chi_{1161}(517,·)$, $\chi_{1161}(646,·)$, $\chi_{1161}(775,·)$, $\chi_{1161}(904,·)$, $\chi_{1161}(1033,·)$, $\chi_{1161}(79,·)$, $\chi_{1161}(208,·)$, $\chi_{1161}(337,·)$, $\chi_{1161}(466,·)$, $\chi_{1161}(595,·)$, $\chi_{1161}(724,·)$, $\chi_{1161}(853,·)$, $\chi_{1161}(982,·)$, $\chi_{1161}(1111,·)$, $\chi_{1161}(49,·)$, $\chi_{1161}(178,·)$, $\chi_{1161}(307,·)$, $\chi_{1161}(436,·)$, $\chi_{1161}(565,·)$, $\chi_{1161}(694,·)$, $\chi_{1161}(823,·)$, $\chi_{1161}(952,·)$, $\chi_{1161}(1081,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{17} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{17} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{20} - \frac{1}{2} a^{17} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{21} - \frac{1}{2} a^{17} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{22} - \frac{1}{2} a^{17} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{23} - \frac{1}{2} a^{17} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{34} a^{24} - \frac{4}{17} a^{23} + \frac{4}{17} a^{22} + \frac{1}{34} a^{21} + \frac{3}{17} a^{20} + \frac{7}{34} a^{19} - \frac{5}{34} a^{18} - \frac{2}{17} a^{16} - \frac{8}{17} a^{15} + \frac{13}{34} a^{14} + \frac{13}{34} a^{13} + \frac{8}{17} a^{12} - \frac{1}{17} a^{11} - \frac{7}{34} a^{10} + \frac{15}{34} a^{9} + \frac{3}{17} a^{8} + \frac{9}{34} a^{7} - \frac{5}{17} a^{6} + \frac{3}{34} a^{5} + \frac{11}{34} a^{4} + \frac{7}{34} a^{3} + \frac{9}{34} a^{2} + \frac{1}{34} a + \frac{6}{17}$, $\frac{1}{34} a^{25} - \frac{5}{34} a^{23} - \frac{3}{34} a^{22} - \frac{3}{34} a^{21} + \frac{2}{17} a^{20} - \frac{3}{17} a^{18} - \frac{2}{17} a^{17} - \frac{7}{17} a^{16} - \frac{13}{34} a^{15} + \frac{15}{34} a^{14} + \frac{1}{34} a^{13} + \frac{7}{34} a^{12} - \frac{3}{17} a^{11} + \frac{5}{17} a^{10} - \frac{5}{17} a^{9} - \frac{11}{34} a^{8} - \frac{3}{17} a^{7} + \frac{4}{17} a^{6} + \frac{1}{34} a^{5} - \frac{7}{34} a^{4} + \frac{7}{17} a^{3} - \frac{6}{17} a^{2} - \frac{7}{17} a - \frac{3}{17}$, $\frac{1}{57467964170561323533280597377831683786548325349416766758192081591029416754472517333553319298400741169152652626230651994379134} a^{26} - \frac{821504579536017541084559666575985666265093677936266373264594230182898500145012626247625965434363416943209855192711526560843}{57467964170561323533280597377831683786548325349416766758192081591029416754472517333553319298400741169152652626230651994379134} a^{25} - \frac{318431336889713359214164729020801121903732848611609099419467368865696811893317485012869995486306438455350684111853446228209}{57467964170561323533280597377831683786548325349416766758192081591029416754472517333553319298400741169152652626230651994379134} a^{24} - \frac{1065733142322131013107503625717940992062737046155091458530650931525224862925256925425209447031389454913975542615913916916485}{57467964170561323533280597377831683786548325349416766758192081591029416754472517333553319298400741169152652626230651994379134} a^{23} + \frac{8852300292070943966306856508335237217033686704052870639016180027653586778516038880802786935128028239622359638507838634753911}{57467964170561323533280597377831683786548325349416766758192081591029416754472517333553319298400741169152652626230651994379134} a^{22} - \frac{5479634411411225900874547293212074832919904643977479542694208147632223967917835178950994117838064551495815005856753724413764}{28733982085280661766640298688915841893274162674708383379096040795514708377236258666776659649200370584576326313115325997189567} a^{21} - \frac{4956591379298471049163611440986605050885266629119615108457194274036985079922021037508022012481709751241638701457741918651214}{28733982085280661766640298688915841893274162674708383379096040795514708377236258666776659649200370584576326313115325997189567} a^{20} + \frac{5304809927099986784298288720053953420887870439938786676974329461517606464302621254936709696370722927122255650243724640952725}{57467964170561323533280597377831683786548325349416766758192081591029416754472517333553319298400741169152652626230651994379134} a^{19} - \frac{6328453299800892278846445238176006226427534747757985769642273511143692565452830432790411398379098745176344935213778548966431}{57467964170561323533280597377831683786548325349416766758192081591029416754472517333553319298400741169152652626230651994379134} a^{18} + \frac{7685326542921797298472482214079714893437103953494263136209039959176673080746495879323692978755697833447517528775429776283439}{57467964170561323533280597377831683786548325349416766758192081591029416754472517333553319298400741169152652626230651994379134} a^{17} + \frac{22329399241630944567585968420035569054864434464557606203843625506651480985035200991154281528344739907858969572856053952679355}{57467964170561323533280597377831683786548325349416766758192081591029416754472517333553319298400741169152652626230651994379134} a^{16} + \frac{5466462624959268661449159445284199794626020504177064802326481759195949631996350423445559656560852524112937085312538431162102}{28733982085280661766640298688915841893274162674708383379096040795514708377236258666776659649200370584576326313115325997189567} a^{15} + \frac{4581249274920725169026876019644266898710860341912271152421380322846262710763356012486958749043183482184336897991968604452309}{28733982085280661766640298688915841893274162674708383379096040795514708377236258666776659649200370584576326313115325997189567} a^{14} - \frac{107536541677281512326053784831019234081065882694577243752013650848175267014531040035311756043734727381905511835640374635233}{57467964170561323533280597377831683786548325349416766758192081591029416754472517333553319298400741169152652626230651994379134} a^{13} + \frac{22800153998355725542058046606890496403963875379919971447546235896790930362515769477644317562808725310368543482140608676833743}{57467964170561323533280597377831683786548325349416766758192081591029416754472517333553319298400741169152652626230651994379134} a^{12} - \frac{1900728750683355940258647971334732332764610982504941220306586587740857249132784528165231835904993470678601041137264934955035}{28733982085280661766640298688915841893274162674708383379096040795514708377236258666776659649200370584576326313115325997189567} a^{11} - \frac{12843396670409243312020973973580453331192747614362878800795866565142288586317987586131469121141120439234816850436728091269845}{28733982085280661766640298688915841893274162674708383379096040795514708377236258666776659649200370584576326313115325997189567} a^{10} - \frac{12046800193397209409830344396380081304042150550023562116485986012054523210539804836794572003370041043128096152600452233343553}{57467964170561323533280597377831683786548325349416766758192081591029416754472517333553319298400741169152652626230651994379134} a^{9} + \frac{1637545865688335198402546131272437399197582171462796646013285316856571891751335284236143944710488654015578806645877614290664}{28733982085280661766640298688915841893274162674708383379096040795514708377236258666776659649200370584576326313115325997189567} a^{8} + \frac{21503051427172043457542826082236104465741920399653196396936464174204462608303909518182827668680710670241834181159232548613277}{57467964170561323533280597377831683786548325349416766758192081591029416754472517333553319298400741169152652626230651994379134} a^{7} - \frac{1166630504596372072402248270303851401759186933012516137031774382386653360957549881051439230496509522460027007895759713519178}{28733982085280661766640298688915841893274162674708383379096040795514708377236258666776659649200370584576326313115325997189567} a^{6} + \frac{23244503929554890612958706418023608643134830424128204361977740211091474494534499111275424733249868638041973762989710092374231}{57467964170561323533280597377831683786548325349416766758192081591029416754472517333553319298400741169152652626230651994379134} a^{5} - \frac{36916706690503814656528520787525805326769860277824346852956124923548540311264934953457463941388070949399273264237644610430}{106817777268701344857398879884445508896929972768432651966899779908976611067792783147868623231228143437086714918644334562043} a^{4} + \frac{6261790268052564405121135625025239624814674858069169248189602206479054812282661040672867575836023161972428414620571185753925}{28733982085280661766640298688915841893274162674708383379096040795514708377236258666776659649200370584576326313115325997189567} a^{3} - \frac{3923569301310536482829564051707811580740368782414441229382257033772929669911513753470107172823899803366197874460506919754950}{28733982085280661766640298688915841893274162674708383379096040795514708377236258666776659649200370584576326313115325997189567} a^{2} + \frac{4336014001467219024171677799764657209763774666999213381459962234433784939051090678444383735140985169907599563961290611717645}{57467964170561323533280597377831683786548325349416766758192081591029416754472517333553319298400741169152652626230651994379134} a + \frac{164391841461838086410107917638509077886706204296833546612782982455183044252130851363505082464537730833672740663577553259829}{537083777294965640497949508204034427911666592050623988394318519542330997705350629285545040171969543636940678749819177517562}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5685564564612443000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_9$ (as 27T2):
| An abelian group of order 27 |
| The 27 conjugacy class representatives for $C_3\times C_9$ |
| Character table for $C_3\times C_9$ is not computed |
Intermediate fields
| 3.3.149769.1, \(\Q(\zeta_{9})^+\), 3.3.1849.1, 3.3.149769.2, 9.9.3359431500123609.1, 9.9.198371070650798987841.2, 9.9.198371070650798987841.1, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{3}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{3}$ | R | ${\href{/LocalNumberField/47.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 43 | Data not computed | ||||||