Normalized defining polynomial
\( x^{27} - 513 x^{25} + 116964 x^{23} - 15617943 x^{21} + 1354686795 x^{19} - 80025043581 x^{17} + 3282297025608 x^{15} - 93545465229828 x^{13} + 1824136571981646 x^{11} - 23533613799022470 x^{9} + 189376374570957288 x^{7} - 858649698338772249 x^{5} + 1812704918715185859 x^{3} - 1135430553480940593 x - 4600558507235203 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(73614397307175798532497185733881845387702404681973260785482012855329=3^{94}\cdot 19^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $326.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1539=3^{4}\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1539}(562,·)$, $\chi_{1539}(1,·)$, $\chi_{1539}(514,·)$, $\chi_{1539}(1027,·)$, $\chi_{1539}(7,·)$, $\chi_{1539}(520,·)$, $\chi_{1539}(1033,·)$, $\chi_{1539}(343,·)$, $\chi_{1539}(856,·)$, $\chi_{1539}(1369,·)$, $\chi_{1539}(220,·)$, $\chi_{1539}(733,·)$, $\chi_{1539}(1246,·)$, $\chi_{1539}(1375,·)$, $\chi_{1539}(1075,·)$, $\chi_{1539}(49,·)$, $\chi_{1539}(391,·)$, $\chi_{1539}(172,·)$, $\chi_{1539}(685,·)$, $\chi_{1539}(1198,·)$, $\chi_{1539}(349,·)$, $\chi_{1539}(904,·)$, $\chi_{1539}(178,·)$, $\chi_{1539}(691,·)$, $\chi_{1539}(1204,·)$, $\chi_{1539}(862,·)$, $\chi_{1539}(1417,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{19} a^{3}$, $\frac{1}{19} a^{4}$, $\frac{1}{19} a^{5}$, $\frac{1}{361} a^{6}$, $\frac{1}{361} a^{7}$, $\frac{1}{361} a^{8}$, $\frac{1}{6859} a^{9}$, $\frac{1}{6859} a^{10}$, $\frac{1}{6859} a^{11}$, $\frac{1}{130321} a^{12}$, $\frac{1}{130321} a^{13}$, $\frac{1}{85475328443} a^{14} + \frac{14190}{85475328443} a^{13} - \frac{14}{4498701497} a^{12} - \frac{184470}{4498701497} a^{11} + \frac{77}{236773763} a^{10} - \frac{184191}{4498701497} a^{9} - \frac{210}{12461777} a^{8} - \frac{82648}{236773763} a^{7} + \frac{294}{655883} a^{6} - \frac{122205}{12461777} a^{5} - \frac{3724}{655883} a^{4} + \frac{177123}{12461777} a^{3} + \frac{17689}{655883} a^{2} - \frac{306396}{655883} a - \frac{13718}{655883}$, $\frac{1}{1624031240417} a^{15} - \frac{15}{85475328443} a^{13} + \frac{14190}{85475328443} a^{12} + \frac{90}{4498701497} a^{11} - \frac{170280}{4498701497} a^{10} - \frac{275}{236773763} a^{9} + \frac{110377}{236773763} a^{8} + \frac{450}{12461777} a^{7} - \frac{25702}{236773763} a^{6} - \frac{378}{655883} a^{5} + \frac{106081}{12461777} a^{4} + \frac{2660}{655883} a^{3} + \frac{132285}{655883} a^{2} - \frac{5415}{655883} a - \frac{248948}{655883}$, $\frac{1}{1624031240417} a^{16} + \frac{227040}{85475328443} a^{13} - \frac{120}{4498701497} a^{12} - \frac{313798}{4498701497} a^{11} + \frac{880}{236773763} a^{10} - \frac{9819}{4498701497} a^{9} - \frac{2700}{12461777} a^{8} + \frac{46344}{236773763} a^{7} + \frac{143786}{236773763} a^{6} + \frac{240655}{12461777} a^{5} + \frac{300966}{12461777} a^{4} - \frac{76804}{12461777} a^{3} + \frac{259920}{655883} a^{2} - \frac{253707}{655883} a - \frac{205770}{655883}$, $\frac{1}{1624031240417} a^{17} - \frac{136}{4498701497} a^{13} - \frac{7811}{85475328443} a^{12} + \frac{1088}{236773763} a^{11} - \frac{292541}{4498701497} a^{10} - \frac{38374}{4498701497} a^{9} + \frac{161521}{236773763} a^{8} - \frac{266924}{236773763} a^{7} - \frac{196559}{236773763} a^{6} - \frac{94383}{12461777} a^{5} - \frac{176883}{12461777} a^{4} - \frac{160125}{12461777} a^{3} + \frac{263225}{655883} a^{2} - \frac{320676}{655883} a - \frac{253647}{655883}$, $\frac{1}{30856593567923} a^{18} + \frac{203421}{85475328443} a^{13} - \frac{816}{4498701497} a^{12} + \frac{12341}{236773763} a^{11} + \frac{6732}{236773763} a^{10} + \frac{35099}{4498701497} a^{9} + \frac{237275}{236773763} a^{8} - \frac{273063}{236773763} a^{7} - \frac{4715}{12461777} a^{6} - \frac{94034}{12461777} a^{5} - \frac{310801}{12461777} a^{4} + \frac{84282}{12461777} a^{3} - \frac{303746}{655883} a^{2} + \frac{258786}{655883} a + \frac{102001}{655883}$, $\frac{1}{30856593567923} a^{19} - \frac{51}{236773763} a^{13} + \frac{191500}{85475328443} a^{12} + \frac{459}{12461777} a^{11} + \frac{10582}{236773763} a^{10} + \frac{262197}{4498701497} a^{9} + \frac{49456}{236773763} a^{8} + \frac{284}{236773763} a^{7} - \frac{2700}{236773763} a^{6} + \frac{130921}{12461777} a^{5} - \frac{11877}{12461777} a^{4} - \frac{129288}{12461777} a^{3} + \frac{118855}{655883} a^{2} + \frac{232993}{655883} a - \frac{252887}{655883}$, $\frac{1}{30856593567923} a^{20} - \frac{253727}{85475328443} a^{13} + \frac{218604}{85475328443} a^{12} + \frac{86062}{4498701497} a^{11} + \frac{306287}{4498701497} a^{10} + \frac{58390}{4498701497} a^{9} - \frac{710}{236773763} a^{8} + \frac{13532}{236773763} a^{7} + \frac{1136}{12461777} a^{6} - \frac{249442}{12461777} a^{5} - \frac{234366}{12461777} a^{4} + \frac{251873}{12461777} a^{3} - \frac{68679}{655883} a^{2} - \frac{59960}{655883} a - \frac{47143}{655883}$, $\frac{1}{586275277790537} a^{21} - \frac{315}{236773763} a^{13} - \frac{186701}{85475328443} a^{12} - \frac{220102}{4498701497} a^{11} - \frac{170958}{4498701497} a^{10} + \frac{140393}{4498701497} a^{9} + \frac{17166}{236773763} a^{8} - \frac{75158}{236773763} a^{7} - \frac{293583}{236773763} a^{6} + \frac{306809}{12461777} a^{5} + \frac{157751}{12461777} a^{4} - \frac{7846}{655883} a^{3} + \frac{271402}{655883} a^{2} - \frac{163597}{655883} a - \frac{199537}{655883}$, $\frac{1}{586275277790537} a^{22} - \frac{43031}{85475328443} a^{13} - \frac{324212}{85475328443} a^{12} - \frac{71019}{4498701497} a^{11} - \frac{4676}{236773763} a^{10} + \frac{14311}{4498701497} a^{9} + \frac{73028}{236773763} a^{8} + \frac{192487}{236773763} a^{7} + \frac{51151}{236773763} a^{6} - \frac{10037}{655883} a^{5} + \frac{205030}{12461777} a^{4} - \frac{59528}{12461777} a^{3} - \frac{252123}{655883} a^{2} - \frac{203951}{655883} a - \frac{252596}{655883}$, $\frac{1}{586275277790537} a^{23} + \frac{16552}{4498701497} a^{13} + \frac{322053}{85475328443} a^{12} + \frac{134535}{4498701497} a^{11} + \frac{3896}{4498701497} a^{10} - \frac{156983}{4498701497} a^{9} - \frac{315740}{236773763} a^{8} - \frac{177311}{236773763} a^{7} - \frac{205117}{236773763} a^{6} - \frac{184314}{12461777} a^{5} - \frac{152078}{12461777} a^{4} + \frac{220197}{12461777} a^{3} + \frac{147128}{655883} a^{2} - \frac{218806}{655883} a - \frac{4558}{655883}$, $\frac{1}{11139230278020203} a^{24} - \frac{84336}{85475328443} a^{13} - \frac{53814}{85475328443} a^{12} - \frac{236482}{4498701497} a^{11} + \frac{319994}{4498701497} a^{10} - \frac{6868}{236773763} a^{9} - \frac{176515}{236773763} a^{8} - \frac{54957}{236773763} a^{7} + \frac{196275}{236773763} a^{6} + \frac{227625}{12461777} a^{5} - \frac{311177}{12461777} a^{4} + \frac{204242}{12461777} a^{3} - \frac{34385}{655883} a^{2} - \frac{62645}{655883} a + \frac{124818}{655883}$, $\frac{1}{11139230278020203} a^{25} - \frac{312449}{85475328443} a^{13} - \frac{35331}{85475328443} a^{12} - \frac{253049}{4498701497} a^{11} - \frac{52928}{4498701497} a^{10} - \frac{73574}{4498701497} a^{9} - \frac{87618}{236773763} a^{8} + \frac{63188}{236773763} a^{7} - \frac{184583}{236773763} a^{6} - \frac{46595}{12461777} a^{5} + \frac{149760}{12461777} a^{4} + \frac{112571}{12461777} a^{3} + \frac{278917}{655883} a^{2} - \frac{265687}{655883} a + \frac{56364}{655883}$, $\frac{1}{11139230278020203} a^{26} - \frac{153101}{85475328443} a^{13} - \frac{31043}{85475328443} a^{12} + \frac{166316}{4498701497} a^{11} - \frac{111138}{4498701497} a^{10} - \frac{192900}{4498701497} a^{9} + \frac{225261}{236773763} a^{8} - \frac{44059}{236773763} a^{7} - \frac{11144}{12461777} a^{6} + \frac{204443}{12461777} a^{5} + \frac{319408}{12461777} a^{4} - \frac{139188}{12461777} a^{3} + \frac{174516}{655883} a^{2} + \frac{271123}{655883} a + \frac{20023}{655883}$
Class group and class number
Not computed
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 27 |
| The 27 conjugacy class representatives for $C_{27}$ |
| Character table for $C_{27}$ is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $27$ | R | $27$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{3}$ | R | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{3}$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{27}$ | $27$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $19$ | 19.9.6.3 | $x^{9} - 361 x^{3} + 27436$ | $3$ | $3$ | $6$ | $C_9$ | $[\ ]_{3}^{3}$ |
| 19.9.6.3 | $x^{9} - 361 x^{3} + 27436$ | $3$ | $3$ | $6$ | $C_9$ | $[\ ]_{3}^{3}$ | |
| 19.9.6.3 | $x^{9} - 361 x^{3} + 27436$ | $3$ | $3$ | $6$ | $C_9$ | $[\ ]_{3}^{3}$ | |