Normalized defining polynomial
\( x^{27} - 513 x^{25} + 116964 x^{23} - 15617943 x^{21} + 1354686795 x^{19} - 80025043581 x^{17} + 3282297025608 x^{15} - 93545465229828 x^{13} + 1824136571981646 x^{11} - 23533613799022470 x^{9} + 189376374570957288 x^{7} - 858649698338772249 x^{5} + 1812704918715185859 x^{3} - 1135430553480940593 x - 319768342177193387 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(73614397307175798532497185733881845387702404681973260785482012855329=3^{94}\cdot 19^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $326.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1539=3^{4}\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1539}(448,·)$, $\chi_{1539}(1,·)$, $\chi_{1539}(514,·)$, $\chi_{1539}(1027,·)$, $\chi_{1539}(961,·)$, $\chi_{1539}(1132,·)$, $\chi_{1539}(343,·)$, $\chi_{1539}(1474,·)$, $\chi_{1539}(463,·)$, $\chi_{1539}(976,·)$, $\chi_{1539}(1489,·)$, $\chi_{1539}(277,·)$, $\chi_{1539}(790,·)$, $\chi_{1539}(1303,·)$, $\chi_{1539}(856,·)$, $\chi_{1539}(1369,·)$, $\chi_{1539}(292,·)$, $\chi_{1539}(805,·)$, $\chi_{1539}(1318,·)$, $\chi_{1539}(106,·)$, $\chi_{1539}(619,·)$, $\chi_{1539}(172,·)$, $\chi_{1539}(685,·)$, $\chi_{1539}(1198,·)$, $\chi_{1539}(121,·)$, $\chi_{1539}(634,·)$, $\chi_{1539}(1147,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{19} a^{3}$, $\frac{1}{19} a^{4}$, $\frac{1}{19} a^{5}$, $\frac{1}{361} a^{6}$, $\frac{1}{361} a^{7}$, $\frac{1}{361} a^{8}$, $\frac{1}{6859} a^{9}$, $\frac{1}{6859} a^{10}$, $\frac{1}{6859} a^{11}$, $\frac{1}{130321} a^{12}$, $\frac{1}{130321} a^{13}$, $\frac{1}{41808670973} a^{14} + \frac{6937}{41808670973} a^{13} - \frac{14}{2200456367} a^{12} - \frac{90181}{2200456367} a^{11} + \frac{77}{115813493} a^{10} - \frac{94756}{2200456367} a^{9} - \frac{210}{6095447} a^{8} - \frac{29236}{115813493} a^{7} + \frac{294}{320813} a^{6} - \frac{72829}{6095447} a^{5} - \frac{3724}{320813} a^{4} - \frac{110157}{6095447} a^{3} + \frac{17689}{320813} a^{2} + \frac{153228}{320813} a - \frac{13718}{320813}$, $\frac{1}{794364748487} a^{15} - \frac{15}{41808670973} a^{13} + \frac{6937}{41808670973} a^{12} + \frac{90}{2200456367} a^{11} - \frac{83244}{2200456367} a^{10} - \frac{275}{115813493} a^{9} + \frac{53785}{115813493} a^{8} + \frac{450}{6095447} a^{7} - \frac{4538}{115813493} a^{6} - \frac{378}{320813} a^{5} + \frac{44356}{6095447} a^{4} + \frac{2660}{320813} a^{3} + \frac{67287}{320813} a^{2} - \frac{5415}{320813} a - \frac{124494}{320813}$, $\frac{1}{794364748487} a^{16} + \frac{110992}{41808670973} a^{13} - \frac{120}{2200456367} a^{12} - \frac{152707}{2200456367} a^{11} + \frac{880}{115813493} a^{10} - \frac{78612}{2200456367} a^{9} - \frac{2700}{6095447} a^{8} - \frac{6435}{6095447} a^{7} - \frac{148513}{115813493} a^{6} - \frac{85640}{6095447} a^{5} - \frac{48361}{6095447} a^{4} - \frac{53089}{6095447} a^{3} - \frac{60893}{320813} a^{2} - \frac{71765}{320813} a + \frac{115043}{320813}$, $\frac{1}{794364748487} a^{17} - \frac{136}{2200456367} a^{13} - \frac{5040}{41808670973} a^{12} + \frac{1088}{115813493} a^{11} - \frac{128530}{2200456367} a^{10} - \frac{66888}{2200456367} a^{9} + \frac{13875}{115813493} a^{8} + \frac{110917}{115813493} a^{7} - \frac{115476}{115813493} a^{6} - \frac{137154}{6095447} a^{5} + \frac{115436}{6095447} a^{4} - \frac{153027}{6095447} a^{3} - \frac{33693}{320813} a^{2} - \frac{28377}{320813} a + \frac{9758}{320813}$, $\frac{1}{15092930221253} a^{18} + \frac{98922}{41808670973} a^{13} - \frac{816}{2200456367} a^{12} + \frac{6428}{115813493} a^{11} + \frac{6732}{115813493} a^{10} - \frac{40421}{2200456367} a^{9} - \frac{97795}{115813493} a^{8} - \frac{81763}{115813493} a^{7} - \frac{139515}{115813493} a^{6} - \frac{21005}{6095447} a^{5} + \frac{145484}{6095447} a^{4} + \frac{63166}{6095447} a^{3} + \frac{74095}{320813} a^{2} - \frac{80863}{320813} a + \frac{59230}{320813}$, $\frac{1}{15092930221253} a^{19} - \frac{51}{115813493} a^{13} + \frac{81403}{41808670973} a^{12} - \frac{155114}{2200456367} a^{11} - \frac{76644}{2200456367} a^{10} + \frac{5571}{2200456367} a^{9} + \frac{17027}{115813493} a^{8} + \frac{135695}{115813493} a^{7} - \frac{139592}{115813493} a^{6} + \frac{38281}{6095447} a^{5} - \frac{109836}{6095447} a^{4} + \frac{20136}{6095447} a^{3} + \frac{122794}{320813} a^{2} - \frac{109175}{320813} a - \frac{26994}{320813}$, $\frac{1}{15092930221253} a^{20} + \frac{114936}{41808670973} a^{13} - \frac{144980}{41808670973} a^{12} + \frac{129053}{2200456367} a^{11} - \frac{7428}{2200456367} a^{10} + \frac{31078}{2200456367} a^{9} + \frac{141982}{115813493} a^{8} - \frac{79374}{115813493} a^{7} + \frac{46804}{115813493} a^{6} + \frac{33785}{6095447} a^{5} + \frac{153013}{6095447} a^{4} - \frac{154159}{6095447} a^{3} - \frac{62191}{320813} a^{2} + \frac{145005}{320813} a - \frac{82267}{320813}$, $\frac{1}{286765674203807} a^{21} - \frac{315}{115813493} a^{13} + \frac{134092}{41808670973} a^{12} + \frac{129225}{2200456367} a^{11} + \frac{83673}{2200456367} a^{10} + \frac{1019}{115813493} a^{9} + \frac{7313}{6095447} a^{8} - \frac{61206}{115813493} a^{7} - \frac{51898}{115813493} a^{6} - \frac{92143}{6095447} a^{5} - \frac{52301}{6095447} a^{4} - \frac{72765}{6095447} a^{3} - \frac{31976}{320813} a^{2} - \frac{92068}{320813} a - \frac{106775}{320813}$, $\frac{1}{286765674203807} a^{22} + \frac{95880}{41808670973} a^{13} + \frac{117816}{41808670973} a^{12} - \frac{61197}{2200456367} a^{11} - \frac{117541}{2200456367} a^{10} + \frac{41180}{2200456367} a^{9} - \frac{154474}{115813493} a^{8} - \frac{38519}{115813493} a^{7} - \frac{103902}{115813493} a^{6} - \frac{14441}{6095447} a^{5} - \frac{101265}{6095447} a^{4} - \frac{4775}{6095447} a^{3} - \frac{84943}{320813} a^{2} - \frac{101224}{320813} a - \frac{149564}{320813}$, $\frac{1}{286765674203807} a^{23} + \frac{2295}{2200456367} a^{13} - \frac{2129}{2200456367} a^{12} - \frac{115237}{2200456367} a^{11} - \frac{35979}{2200456367} a^{10} + \frac{54244}{2200456367} a^{9} + \frac{113585}{115813493} a^{8} + \frac{100597}{115813493} a^{7} + \frac{106874}{115813493} a^{6} - \frac{72503}{6095447} a^{5} - \frac{152006}{6095447} a^{4} + \frac{37722}{6095447} a^{3} + \frac{15787}{320813} a^{2} - \frac{18869}{320813} a - \frac{51460}{320813}$, $\frac{1}{5448547809872333} a^{24} + \frac{118106}{41808670973} a^{13} - \frac{146393}{41808670973} a^{12} - \frac{62193}{2200456367} a^{11} + \frac{5364}{2200456367} a^{10} + \frac{67391}{2200456367} a^{9} + \frac{112041}{115813493} a^{8} - \frac{116521}{115813493} a^{7} - \frac{152966}{115813493} a^{6} - \frac{59673}{6095447} a^{5} - \frac{45682}{6095447} a^{4} + \frac{25458}{6095447} a^{3} + \frac{129118}{320813} a^{2} - \frac{117460}{320813} a + \frac{43136}{320813}$, $\frac{1}{5448547809872333} a^{25} - \frac{91313}{41808670973} a^{13} + \frac{78107}{41808670973} a^{12} - \frac{69050}{2200456367} a^{11} - \frac{124293}{2200456367} a^{10} - \frac{105468}{2200456367} a^{9} - \frac{147878}{115813493} a^{8} - \frac{116269}{115813493} a^{7} - \frac{107203}{115813493} a^{6} - \frac{141964}{6095447} a^{5} - \frac{124243}{6095447} a^{4} + \frac{159791}{6095447} a^{3} - \frac{160238}{320813} a^{2} - \frac{41702}{320813} a + \frac{72458}{320813}$, $\frac{1}{5448547809872333} a^{26} - \frac{89287}{41808670973} a^{13} + \frac{63832}{41808670973} a^{12} + \frac{126951}{2200456367} a^{11} + \frac{27243}{2200456367} a^{10} - \frac{50383}{2200456367} a^{9} - \frac{609}{6095447} a^{8} + \frac{71715}{115813493} a^{7} - \frac{156787}{115813493} a^{6} + \frac{94770}{6095447} a^{5} + \frac{70170}{6095447} a^{4} - \frac{152544}{6095447} a^{3} - \frac{99500}{320813} a^{2} - \frac{157360}{320813} a + \frac{143031}{320813}$
Class group and class number
Not computed
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 27 |
| The 27 conjugacy class representatives for $C_{27}$ |
| Character table for $C_{27}$ is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $27$ | R | $27$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{3}$ | R | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{3}$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{9}$ | $27$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $19$ | 19.9.6.1 | $x^{9} - 38 x^{6} + 361 x^{3} - 109744$ | $3$ | $3$ | $6$ | $C_9$ | $[\ ]_{3}^{3}$ |
| 19.9.6.1 | $x^{9} - 38 x^{6} + 361 x^{3} - 109744$ | $3$ | $3$ | $6$ | $C_9$ | $[\ ]_{3}^{3}$ | |
| 19.9.6.1 | $x^{9} - 38 x^{6} + 361 x^{3} - 109744$ | $3$ | $3$ | $6$ | $C_9$ | $[\ ]_{3}^{3}$ | |