Normalized defining polynomial
\( x^{27} - 51 x^{25} - 4 x^{24} + 1080 x^{23} + 156 x^{22} - 12356 x^{21} - 2448 x^{20} + 83283 x^{19} + 19984 x^{18} - 339003 x^{17} - 91596 x^{16} + 825846 x^{15} + 238428 x^{14} - 1168977 x^{13} - 344712 x^{12} + 930681 x^{11} + 259620 x^{10} - 414755 x^{9} - 102465 x^{8} + 101628 x^{7} + 20920 x^{6} - 12933 x^{5} - 2085 x^{4} + 755 x^{3} + 90 x^{2} - 15 x - 1 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(735278035529026786878794063569162978753987707441=3^{36}\cdot 19^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(171=3^{2}\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{171}(64,·)$, $\chi_{171}(1,·)$, $\chi_{171}(130,·)$, $\chi_{171}(4,·)$, $\chi_{171}(7,·)$, $\chi_{171}(73,·)$, $\chi_{171}(139,·)$, $\chi_{171}(142,·)$, $\chi_{171}(16,·)$, $\chi_{171}(82,·)$, $\chi_{171}(85,·)$, $\chi_{171}(25,·)$, $\chi_{171}(28,·)$, $\chi_{171}(157,·)$, $\chi_{171}(163,·)$, $\chi_{171}(100,·)$, $\chi_{171}(169,·)$, $\chi_{171}(106,·)$, $\chi_{171}(43,·)$, $\chi_{171}(112,·)$, $\chi_{171}(49,·)$, $\chi_{171}(115,·)$, $\chi_{171}(118,·)$, $\chi_{171}(55,·)$, $\chi_{171}(121,·)$, $\chi_{171}(58,·)$, $\chi_{171}(61,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $\frac{1}{37} a^{22} + \frac{7}{37} a^{21} - \frac{18}{37} a^{19} - \frac{4}{37} a^{18} - \frac{11}{37} a^{17} + \frac{1}{37} a^{16} + \frac{6}{37} a^{15} - \frac{1}{37} a^{14} - \frac{18}{37} a^{13} + \frac{1}{37} a^{11} - \frac{6}{37} a^{10} + \frac{9}{37} a^{9} - \frac{6}{37} a^{8} - \frac{9}{37} a^{7} - \frac{13}{37} a^{6} - \frac{10}{37} a^{5} - \frac{15}{37} a^{4} + \frac{8}{37} a^{3} + \frac{11}{37} a^{2} + \frac{11}{37} a + \frac{8}{37}$, $\frac{1}{37} a^{23} - \frac{12}{37} a^{21} - \frac{18}{37} a^{20} + \frac{11}{37} a^{19} + \frac{17}{37} a^{18} + \frac{4}{37} a^{17} - \frac{1}{37} a^{16} - \frac{6}{37} a^{15} - \frac{11}{37} a^{14} + \frac{15}{37} a^{13} + \frac{1}{37} a^{12} - \frac{13}{37} a^{11} + \frac{14}{37} a^{10} + \frac{5}{37} a^{9} - \frac{4}{37} a^{8} + \frac{13}{37} a^{7} + \frac{7}{37} a^{6} + \frac{18}{37} a^{5} + \frac{2}{37} a^{4} - \frac{8}{37} a^{3} + \frac{8}{37} a^{2} + \frac{5}{37} a + \frac{18}{37}$, $\frac{1}{259} a^{24} + \frac{1}{259} a^{23} - \frac{1}{259} a^{22} + \frac{10}{259} a^{21} + \frac{104}{259} a^{20} + \frac{18}{37} a^{19} + \frac{51}{259} a^{18} - \frac{81}{259} a^{17} - \frac{10}{37} a^{16} - \frac{62}{259} a^{15} + \frac{67}{259} a^{14} + \frac{3}{259} a^{13} + \frac{25}{259} a^{12} + \frac{86}{259} a^{11} - \frac{12}{37} a^{10} + \frac{9}{37} a^{9} + \frac{54}{259} a^{8} - \frac{5}{259} a^{7} + \frac{67}{259} a^{6} - \frac{53}{259} a^{5} + \frac{2}{37} a^{4} - \frac{97}{259} a^{3} - \frac{2}{37} a^{2} - \frac{41}{259} a + \frac{106}{259}$, $\frac{1}{167573} a^{25} + \frac{207}{167573} a^{24} - \frac{1664}{167573} a^{23} + \frac{141}{23939} a^{22} - \frac{24625}{167573} a^{21} + \frac{34213}{167573} a^{20} - \frac{75675}{167573} a^{19} - \frac{40066}{167573} a^{18} - \frac{71951}{167573} a^{17} + \frac{80515}{167573} a^{16} - \frac{10225}{23939} a^{15} + \frac{82909}{167573} a^{14} + \frac{57504}{167573} a^{13} + \frac{178}{647} a^{12} - \frac{48574}{167573} a^{11} + \frac{314}{647} a^{10} - \frac{81496}{167573} a^{9} - \frac{1453}{167573} a^{8} + \frac{12526}{167573} a^{7} + \frac{15331}{167573} a^{6} + \frac{81671}{167573} a^{5} - \frac{27243}{167573} a^{4} - \frac{6717}{167573} a^{3} - \frac{32059}{167573} a^{2} - \frac{12183}{167573} a - \frac{35753}{167573}$, $\frac{1}{22535003470568102738975368344886506403} a^{26} + \frac{13054259234559289784144812899643}{22535003470568102738975368344886506403} a^{25} - \frac{17937507015278378530930310980190101}{22535003470568102738975368344886506403} a^{24} + \frac{10311887617202206858569341358683003}{3219286210081157534139338334983786629} a^{23} + \frac{61237083266114227258150526553303285}{22535003470568102738975368344886506403} a^{22} + \frac{4949653980576477565314222355122851781}{22535003470568102738975368344886506403} a^{21} + \frac{10273305630368989160359027009381756363}{22535003470568102738975368344886506403} a^{20} + \frac{9205919698363090412057030368987904144}{22535003470568102738975368344886506403} a^{19} - \frac{6537077146895370159555042498736814178}{22535003470568102738975368344886506403} a^{18} + \frac{3998484399830831854030415746816005019}{22535003470568102738975368344886506403} a^{17} - \frac{6837612767192994241052033309831389463}{22535003470568102738975368344886506403} a^{16} + \frac{793095610656784969862086804832390409}{3219286210081157534139338334983786629} a^{15} - \frac{3565826732592495848822811171484654821}{22535003470568102738975368344886506403} a^{14} - \frac{1599666878031742865156627947071896865}{3219286210081157534139338334983786629} a^{13} + \frac{9653194163033856187240490483732394}{34829989908142353537829008261030149} a^{12} - \frac{8598841684481909585504240376488359114}{22535003470568102738975368344886506403} a^{11} - \frac{2873366968198295144958993155938251014}{22535003470568102738975368344886506403} a^{10} + \frac{1497150057525618447779254771726818963}{22535003470568102738975368344886506403} a^{9} - \frac{7618644660018565106267151869599299350}{22535003470568102738975368344886506403} a^{8} + \frac{7940705255687416446131418699247905182}{22535003470568102738975368344886506403} a^{7} - \frac{2858004253349434195268988977742357522}{22535003470568102738975368344886506403} a^{6} + \frac{5467886876102442685586029906292795329}{22535003470568102738975368344886506403} a^{5} - \frac{527504563821138192337928847090142043}{3219286210081157534139338334983786629} a^{4} - \frac{2060382369645091529607610590313499878}{22535003470568102738975368344886506403} a^{3} + \frac{1253859824879841205113139674900987073}{22535003470568102738975368344886506403} a^{2} + \frac{5140224931908462363741447822331475639}{22535003470568102738975368344886506403} a - \frac{2570516716407076236321134730778802312}{22535003470568102738975368344886506403}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3059088874781005.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_9$ (as 27T2):
| An abelian group of order 27 |
| The 27 conjugacy class representatives for $C_3\times C_9$ |
| Character table for $C_3\times C_9$ is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 3.3.361.1, 3.3.29241.1, 3.3.29241.2, 9.9.25002110044521.1, 9.9.9025761726072081.1, 9.9.9025761726072081.2, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{3}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{3}$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{27}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $19$ | 19.9.8.8 | $x^{9} - 19$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
| 19.9.8.8 | $x^{9} - 19$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |
| 19.9.8.8 | $x^{9} - 19$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |