\\ Pari/GP code for working with number field 27.27.706965049015104706497203195837614914543357369.1 \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^27 - 27*y^25 + 324*y^23 - 2277*y^21 + 10395*y^19 - 32319*y^17 + 69768*y^15 - 104652*y^13 + 107406*y^11 - 72930*y^9 + 30888*y^7 - 7371*y^5 + 819*y^3 - 27*y - 1, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: # self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^27 - 27*x^25 + 324*x^23 - 2277*x^21 + 10395*x^19 - 32319*x^17 + 69768*x^15 - 104652*x^13 + 107406*x^11 - 72930*x^9 + 30888*x^7 - 7371*x^5 + 819*x^3 - 27*x - 1, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(b)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])