Normalized defining polynomial
\( x^{27} - 6 x^{26} - 53 x^{25} + 366 x^{24} + 982 x^{23} - 8844 x^{22} - 6757 x^{21} + 112446 x^{20} - 14683 x^{19} - 834075 x^{18} + 521672 x^{17} + 3777786 x^{16} - 3504440 x^{15} - 10646520 x^{14} + 12070299 x^{13} + 18475792 x^{12} - 24076806 x^{11} - 18615256 x^{10} + 28010042 x^{9} + 9025037 x^{8} - 17745073 x^{7} - 453885 x^{6} + 4979339 x^{5} - 862152 x^{4} - 251138 x^{3} + 61524 x^{2} - 1124 x - 223 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(70567721948812723604880306782225092911730957083793489=7^{18}\cdot 37^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(259=7\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{259}(256,·)$, $\chi_{259}(1,·)$, $\chi_{259}(197,·)$, $\chi_{259}(71,·)$, $\chi_{259}(9,·)$, $\chi_{259}(144,·)$, $\chi_{259}(81,·)$, $\chi_{259}(211,·)$, $\chi_{259}(149,·)$, $\chi_{259}(86,·)$, $\chi_{259}(218,·)$, $\chi_{259}(155,·)$, $\chi_{259}(158,·)$, $\chi_{259}(16,·)$, $\chi_{259}(219,·)$, $\chi_{259}(100,·)$, $\chi_{259}(232,·)$, $\chi_{259}(107,·)$, $\chi_{259}(44,·)$, $\chi_{259}(46,·)$, $\chi_{259}(53,·)$, $\chi_{259}(137,·)$, $\chi_{259}(120,·)$, $\chi_{259}(121,·)$, $\chi_{259}(186,·)$, $\chi_{259}(123,·)$, $\chi_{259}(127,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{43} a^{21} - \frac{19}{43} a^{20} + \frac{11}{43} a^{19} - \frac{9}{43} a^{18} - \frac{3}{43} a^{17} + \frac{2}{43} a^{16} - \frac{2}{43} a^{15} + \frac{17}{43} a^{13} + \frac{21}{43} a^{12} + \frac{12}{43} a^{11} - \frac{15}{43} a^{10} + \frac{21}{43} a^{9} + \frac{20}{43} a^{8} - \frac{11}{43} a^{7} - \frac{9}{43} a^{6} + \frac{3}{43} a^{5} + \frac{1}{43} a^{4} + \frac{14}{43} a^{3} + \frac{5}{43} a^{2} + \frac{20}{43} a - \frac{18}{43}$, $\frac{1}{43} a^{22} - \frac{6}{43} a^{20} - \frac{15}{43} a^{19} - \frac{2}{43} a^{18} - \frac{12}{43} a^{17} - \frac{7}{43} a^{16} + \frac{5}{43} a^{15} + \frac{17}{43} a^{14} - \frac{19}{43} a^{12} - \frac{2}{43} a^{11} - \frac{6}{43} a^{10} - \frac{11}{43} a^{9} - \frac{18}{43} a^{8} - \frac{3}{43} a^{7} + \frac{4}{43} a^{6} + \frac{15}{43} a^{5} - \frac{10}{43} a^{4} + \frac{13}{43} a^{3} - \frac{14}{43} a^{2} + \frac{18}{43} a + \frac{2}{43}$, $\frac{1}{43} a^{23} + \frac{21}{43} a^{19} + \frac{20}{43} a^{18} + \frac{18}{43} a^{17} + \frac{17}{43} a^{16} + \frac{5}{43} a^{15} - \frac{3}{43} a^{13} - \frac{5}{43} a^{12} - \frac{20}{43} a^{11} - \frac{15}{43} a^{10} - \frac{21}{43} a^{9} - \frac{12}{43} a^{8} - \frac{19}{43} a^{7} + \frac{4}{43} a^{6} + \frac{8}{43} a^{5} + \frac{19}{43} a^{4} - \frac{16}{43} a^{3} + \frac{5}{43} a^{2} - \frac{7}{43} a + \frac{21}{43}$, $\frac{1}{1333} a^{24} - \frac{10}{1333} a^{23} + \frac{15}{1333} a^{22} + \frac{15}{1333} a^{21} + \frac{119}{1333} a^{20} + \frac{266}{1333} a^{19} - \frac{562}{1333} a^{18} + \frac{429}{1333} a^{17} + \frac{20}{43} a^{16} + \frac{597}{1333} a^{15} - \frac{221}{1333} a^{14} + \frac{366}{1333} a^{13} + \frac{275}{1333} a^{12} - \frac{267}{1333} a^{11} - \frac{358}{1333} a^{10} - \frac{39}{1333} a^{9} - \frac{643}{1333} a^{8} + \frac{113}{1333} a^{7} - \frac{365}{1333} a^{6} - \frac{479}{1333} a^{5} - \frac{83}{1333} a^{4} + \frac{97}{1333} a^{3} - \frac{579}{1333} a^{2} - \frac{328}{1333} a - \frac{536}{1333}$, $\frac{1}{1734233} a^{25} + \frac{367}{1734233} a^{24} + \frac{11776}{1734233} a^{23} - \frac{1739}{1734233} a^{22} + \frac{8626}{1734233} a^{21} + \frac{684566}{1734233} a^{20} - \frac{455366}{1734233} a^{19} + \frac{648185}{1734233} a^{18} + \frac{663561}{1734233} a^{17} + \frac{262671}{1734233} a^{16} + \frac{490363}{1734233} a^{15} - \frac{731440}{1734233} a^{14} + \frac{328101}{1734233} a^{13} + \frac{253076}{1734233} a^{12} - \frac{28012}{1734233} a^{11} + \frac{10286}{55943} a^{10} + \frac{844966}{1734233} a^{9} - \frac{824788}{1734233} a^{8} + \frac{251207}{1734233} a^{7} + \frac{828496}{1734233} a^{6} - \frac{592222}{1734233} a^{5} + \frac{684751}{1734233} a^{4} - \frac{652799}{1734233} a^{3} + \frac{10355}{1734233} a^{2} - \frac{49296}{1734233} a + \frac{667106}{1734233}$, $\frac{1}{1618365725208043775989176733101778566418398807413349157} a^{26} - \frac{294695514694584304696443758540314305533386838483}{1618365725208043775989176733101778566418398807413349157} a^{25} - \frac{247156418321751726838462204570797046256519835897170}{1618365725208043775989176733101778566418398807413349157} a^{24} + \frac{959262445536657235087035095327063256009542593756543}{1618365725208043775989176733101778566418398807413349157} a^{23} + \frac{2608214348551761633383345422759391213137588034538331}{1618365725208043775989176733101778566418398807413349157} a^{22} + \frac{6904640930052634662586683256521955508933107109253102}{1618365725208043775989176733101778566418398807413349157} a^{21} + \frac{540092325649894040489602205476198897569104598080128817}{1618365725208043775989176733101778566418398807413349157} a^{20} - \frac{669041488773471483557151725106562714018792715739740916}{1618365725208043775989176733101778566418398807413349157} a^{19} - \frac{733604479243151935949891616890747122799841580042817339}{1618365725208043775989176733101778566418398807413349157} a^{18} - \frac{709959713997777210738146593321165053464037477161358337}{1618365725208043775989176733101778566418398807413349157} a^{17} - \frac{104275676474123930474211173802831678889465150456977961}{1618365725208043775989176733101778566418398807413349157} a^{16} + \frac{84641654071632368355137230236396051131911414613325838}{1618365725208043775989176733101778566418398807413349157} a^{15} + \frac{478425161048917675358012550821155093909944548705223049}{1618365725208043775989176733101778566418398807413349157} a^{14} - \frac{23969249469038306155181588519764658900795769283446402}{1618365725208043775989176733101778566418398807413349157} a^{13} + \frac{559572642037783037466354477793169621699084430720255134}{1618365725208043775989176733101778566418398807413349157} a^{12} - \frac{787900339423935804258589846010087147793965431338989689}{1618365725208043775989176733101778566418398807413349157} a^{11} + \frac{310871121898926709675756675338663965026329200093142721}{1618365725208043775989176733101778566418398807413349157} a^{10} - \frac{765351462785027497465392849195689514288014504546460257}{1618365725208043775989176733101778566418398807413349157} a^{9} + \frac{705490283788395684743696427005297153838883598637870814}{1618365725208043775989176733101778566418398807413349157} a^{8} + \frac{576564060416948628774143822006241188200889432342692210}{1618365725208043775989176733101778566418398807413349157} a^{7} + \frac{25838788930471650371983349008921837102279176879357620}{52205345974453025031908926874250921497367703464946747} a^{6} + \frac{91307478637306507594106538213374888699145756660915621}{1618365725208043775989176733101778566418398807413349157} a^{5} - \frac{808813691192082343194041380024384833031595717073175491}{1618365725208043775989176733101778566418398807413349157} a^{4} - \frac{752656935165243332548947590227246396781909516207578731}{1618365725208043775989176733101778566418398807413349157} a^{3} - \frac{660428629467220522645591435716142363091568751748732911}{1618365725208043775989176733101778566418398807413349157} a^{2} - \frac{396115762852863692577411621279144280397494670024723660}{1618365725208043775989176733101778566418398807413349157} a + \frac{684627255431481189895760531710009110083835872957596}{7257245404520375677081510013909320925643043979432059}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 710242126153974400 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_9$ (as 27T2):
| An abelian group of order 27 |
| The 27 conjugacy class representatives for $C_3\times C_9$ |
| Character table for $C_3\times C_9$ is not computed |
Intermediate fields
| 3.3.67081.2, 3.3.1369.1, 3.3.67081.1, \(\Q(\zeta_{7})^+\), 9.9.301855146292441.1, 9.9.413239695274351729.1, 9.9.3512479453921.1, 9.9.413239695274351729.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{9}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{27}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 37 | Data not computed | ||||||