Normalized defining polynomial
\( x^{27} - 9 x^{26} - 261 x^{25} + 2877 x^{24} + 25515 x^{23} - 385335 x^{22} - 888774 x^{21} + 27904176 x^{20} - 30624669 x^{19} - 1158540616 x^{18} + 4183764714 x^{17} + 25557050754 x^{16} - 174741571434 x^{15} - 143798389803 x^{14} + 3671235722367 x^{13} - 6416274457389 x^{12} - 35021761608051 x^{11} + 155084845070178 x^{10} - 18670398026360 x^{9} - 1202353337008818 x^{8} + 2846666722896927 x^{7} + 52405731960495 x^{6} - 12365151517166049 x^{5} + 27636990777084987 x^{4} - 30918692573230389 x^{3} + 19464015249722088 x^{2} - 6490810357686540 x + 878893626230101 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5659106580522258442740055894009895600932750567734671570320232266209=3^{66}\cdot 7^{18}\cdot 13^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $296.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2457=3^{3}\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2457}(256,·)$, $\chi_{2457}(1,·)$, $\chi_{2457}(835,·)$, $\chi_{2457}(1348,·)$, $\chi_{2457}(1093,·)$, $\chi_{2457}(1927,·)$, $\chi_{2457}(2440,·)$, $\chi_{2457}(2185,·)$, $\chi_{2457}(16,·)$, $\chi_{2457}(529,·)$, $\chi_{2457}(274,·)$, $\chi_{2457}(1108,·)$, $\chi_{2457}(1621,·)$, $\chi_{2457}(1366,·)$, $\chi_{2457}(2200,·)$, $\chi_{2457}(289,·)$, $\chi_{2457}(802,·)$, $\chi_{2457}(547,·)$, $\chi_{2457}(1381,·)$, $\chi_{2457}(1894,·)$, $\chi_{2457}(1639,·)$, $\chi_{2457}(562,·)$, $\chi_{2457}(1075,·)$, $\chi_{2457}(820,·)$, $\chi_{2457}(1654,·)$, $\chi_{2457}(2167,·)$, $\chi_{2457}(1912,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{17} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{17} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{20} - \frac{1}{2} a^{17} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{21} - \frac{1}{2} a^{17} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{22} - \frac{1}{2} a^{17} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{23} - \frac{1}{2} a^{17} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{24} - \frac{1}{2} a^{17} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{25} - \frac{1}{2} a^{17} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{26859579401923559969902435304755824096091242659723035816212831924484984688665329212092091310276004667048172179008785709978931238581110861598851456479796418} a^{26} + \frac{459081398351962924235299889006940343625563132038218071035865282131256310867651625450913189983774622267152476179210538796901084036543443800607116042151925}{26859579401923559969902435304755824096091242659723035816212831924484984688665329212092091310276004667048172179008785709978931238581110861598851456479796418} a^{25} - \frac{2578086934257387036487113713337603534867041594493825236589547192548835488096173098006996695717220839287949649489630330176079294691829999531515905535839171}{26859579401923559969902435304755824096091242659723035816212831924484984688665329212092091310276004667048172179008785709978931238581110861598851456479796418} a^{24} + \frac{2732499611608384231215070759715379468778763076690194116083175464393819175141576733748152942739392253303957735262858733886004288740416345463405482777942931}{13429789700961779984951217652377912048045621329861517908106415962242492344332664606046045655138002333524086089504392854989465619290555430799425728239898209} a^{23} + \frac{2301240325823830638371264489255454131344001433782106268450730274391962390654676804250418405212386042010445544042233271148677638260083632108877577321187191}{13429789700961779984951217652377912048045621329861517908106415962242492344332664606046045655138002333524086089504392854989465619290555430799425728239898209} a^{22} + \frac{839512751281436115667354812232870224292892742998429600049389837308862978512144545245214240615429319337198942699499484107202221027661068658745910494758297}{26859579401923559969902435304755824096091242659723035816212831924484984688665329212092091310276004667048172179008785709978931238581110861598851456479796418} a^{21} - \frac{1667852755675870249003961729471929361858826007645244355937417500978622330654644233963198906516837453651590480899233237019028065661784619410420319419699844}{13429789700961779984951217652377912048045621329861517908106415962242492344332664606046045655138002333524086089504392854989465619290555430799425728239898209} a^{20} + \frac{1097361978581095117964729438556715555824588093777912327893213984639396551595011850456126555639862552726350382089650309686696827333823654020505298846149031}{13429789700961779984951217652377912048045621329861517908106415962242492344332664606046045655138002333524086089504392854989465619290555430799425728239898209} a^{19} - \frac{1152217542574209735122460635292202967050101213300574233137383156701791343690315850554491343647436310077790428591052960454076495953894246497917891788524381}{26859579401923559969902435304755824096091242659723035816212831924484984688665329212092091310276004667048172179008785709978931238581110861598851456479796418} a^{18} + \frac{11284427838359613019282706527228071401967011246752948866746547109500337217316216853756296281048599441155218757536849723185781113385625668997247398594929717}{26859579401923559969902435304755824096091242659723035816212831924484984688665329212092091310276004667048172179008785709978931238581110861598851456479796418} a^{17} + \frac{12930308257443973950018616381014086606275316245718459911878799080548875218138296621066909666341811871603357132917963154678257166121074095155267081957337905}{26859579401923559969902435304755824096091242659723035816212831924484984688665329212092091310276004667048172179008785709978931238581110861598851456479796418} a^{16} - \frac{6648317344188613301733593734429444091283398261376503768242263529096088160630409472225365314314830886137216065482476707052023544159926873524836978881067423}{13429789700961779984951217652377912048045621329861517908106415962242492344332664606046045655138002333524086089504392854989465619290555430799425728239898209} a^{15} + \frac{1784760833505465895564768662722367790621497468327987899546804890037145436997548231245214258128358591783844738749533084334643426166376928889154934619000861}{13429789700961779984951217652377912048045621329861517908106415962242492344332664606046045655138002333524086089504392854989465619290555430799425728239898209} a^{14} - \frac{3847496929065508831840569234815197824170121552649346324357030446906379627223847776583148498484048999117670641186165224549952652198930941406472401866929122}{13429789700961779984951217652377912048045621329861517908106415962242492344332664606046045655138002333524086089504392854989465619290555430799425728239898209} a^{13} + \frac{790793936311753933452343885988341912304782655419274764732273349438263122914664483902836229976764720046391624637223784276592151935304971825499543621961309}{26859579401923559969902435304755824096091242659723035816212831924484984688665329212092091310276004667048172179008785709978931238581110861598851456479796418} a^{12} - \frac{2922532696318481702850018562724296109990715517674489940303102045631226889205325455181493384676569738434372157047978061718727600983793475473447901382755185}{13429789700961779984951217652377912048045621329861517908106415962242492344332664606046045655138002333524086089504392854989465619290555430799425728239898209} a^{11} + \frac{2232966441063595795193662323842277214986254502741651985166256587263874950252650535974946596354070092064899670085501727460983148034293758735580257550822248}{13429789700961779984951217652377912048045621329861517908106415962242492344332664606046045655138002333524086089504392854989465619290555430799425728239898209} a^{10} + \frac{4297588407538560569888498933007652524613326807397738079577830622706697664568996476392617687083056417767194571178466288519273346909491653214506832789299509}{26859579401923559969902435304755824096091242659723035816212831924484984688665329212092091310276004667048172179008785709978931238581110861598851456479796418} a^{9} + \frac{4497414187835120506023605028766775232111532466757329868030831391935857979569336298808144978984002438600228586059698243892977479130629401287886825723597476}{13429789700961779984951217652377912048045621329861517908106415962242492344332664606046045655138002333524086089504392854989465619290555430799425728239898209} a^{8} + \frac{935229620709445922048823033468737920982088320632998551904659672278149146509619064654891464506372946241217094224937233194582212338915480570301229423564354}{13429789700961779984951217652377912048045621329861517908106415962242492344332664606046045655138002333524086089504392854989465619290555430799425728239898209} a^{7} - \frac{6485178818837158845049450614598129209891925395600537609236269917945285978701165696694353270376839049628390241783691853522270578042307671388964381569835127}{13429789700961779984951217652377912048045621329861517908106415962242492344332664606046045655138002333524086089504392854989465619290555430799425728239898209} a^{6} - \frac{13314887037573275884221910792507843141968559984946176809153645962573606640618939268156691611715011645172648760035748504750529616989333473419416181900205079}{26859579401923559969902435304755824096091242659723035816212831924484984688665329212092091310276004667048172179008785709978931238581110861598851456479796418} a^{5} + \frac{504111565069973606373909743048672939944565545200817762281525687507003912941367722535179724523985841179645360229637219390270757647821996816996741680029788}{13429789700961779984951217652377912048045621329861517908106415962242492344332664606046045655138002333524086089504392854989465619290555430799425728239898209} a^{4} + \frac{224908001678931821253540341643166270378225526460482154045589048643496379007645657303325786007827487152680926520411298067142168562603462564821523748442137}{13429789700961779984951217652377912048045621329861517908106415962242492344332664606046045655138002333524086089504392854989465619290555430799425728239898209} a^{3} + \frac{1532507579469142063281259822936903843112042701064777435096882659733837319161762482727460206629775564315457771523001166771187102091209665940124950587365905}{26859579401923559969902435304755824096091242659723035816212831924484984688665329212092091310276004667048172179008785709978931238581110861598851456479796418} a^{2} + \frac{21706961160396203070769950480415958945761855785957683341261935844775984927459515363289503153646650432843731713366696052459258543384310470786643435188903}{99112839121489151180451790792456915483731522729605298214807497876328356784742912221742034355262009841506170402246441734239598666350962588925651130921758} a + \frac{8581277193716215253598747415460143934837878551971032717955556162736591017516647834815358785426056783220900603947712025276680678435823314372233662214096955}{26859579401923559969902435304755824096091242659723035816212831924484984688665329212092091310276004667048172179008785709978931238581110861598851456479796418}$
Class group and class number
Not computed
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_9$ (as 27T2):
| An abelian group of order 27 |
| The 27 conjugacy class representatives for $C_3\times C_9$ |
| Character table for $C_3\times C_9$ is not computed |
Intermediate fields
| 3.3.670761.3, \(\Q(\zeta_{9})^+\), 3.3.670761.1, 3.3.8281.1, 9.9.301789003173921081.12, 9.9.17820338848416865911969.2, 9.9.17820338848416865911969.1, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{3}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{3}$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{3}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 13 | Data not computed | ||||||