Normalized defining polynomial
\( x^{27} - 180 x^{25} + 13581 x^{23} - 560310 x^{21} + 13841163 x^{19} - 92880 x^{18} - 211280076 x^{17} + 7745112 x^{16} + 1997088057 x^{15} - 233589906 x^{14} - 11538409068 x^{13} + 3103240140 x^{12} + 40044205305 x^{11} - 18541949166 x^{10} - 79554132019 x^{9} + 53008275636 x^{8} + 81498609540 x^{7} - 72744969402 x^{6} - 31916666358 x^{5} + 42662749410 x^{4} - 2061705231 x^{3} - 6710328360 x^{2} + 969338907 x + 230754987 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5659106580522258442740055894009895600932750567734671570320232266209=3^{66}\cdot 7^{18}\cdot 13^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $296.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2457=3^{3}\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2457}(1,·)$, $\chi_{2457}(898,·)$, $\chi_{2457}(1348,·)$, $\chi_{2457}(841,·)$, $\chi_{2457}(1738,·)$, $\chi_{2457}(1303,·)$, $\chi_{2457}(79,·)$, $\chi_{2457}(529,·)$, $\chi_{2457}(1810,·)$, $\chi_{2457}(22,·)$, $\chi_{2457}(919,·)$, $\chi_{2457}(2200,·)$, $\chi_{2457}(100,·)$, $\chi_{2457}(991,·)$, $\chi_{2457}(2146,·)$, $\chi_{2457}(484,·)$, $\chi_{2457}(1381,·)$, $\chi_{2457}(1639,·)$, $\chi_{2457}(1660,·)$, $\chi_{2457}(172,·)$, $\chi_{2457}(1327,·)$, $\chi_{2457}(562,·)$, $\chi_{2457}(820,·)$, $\chi_{2457}(1717,·)$, $\chi_{2457}(2167,·)$, $\chi_{2457}(508,·)$, $\chi_{2457}(2122,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{3} a^{20} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{21} - \frac{1}{3} a^{3}$, $\frac{1}{9} a^{22} + \frac{1}{3} a^{16} - \frac{1}{9} a^{4}$, $\frac{1}{4441707} a^{23} + \frac{229850}{4441707} a^{22} + \frac{2945}{1480569} a^{21} - \frac{5594}{493523} a^{20} + \frac{11184}{493523} a^{19} - \frac{153994}{493523} a^{18} + \frac{689710}{1480569} a^{17} + \frac{57872}{1480569} a^{16} - \frac{21903}{493523} a^{15} - \frac{28145}{493523} a^{14} + \frac{39330}{493523} a^{13} - \frac{58076}{493523} a^{12} + \frac{173939}{493523} a^{11} - \frac{30116}{493523} a^{10} - \frac{58022}{493523} a^{9} - \frac{118377}{493523} a^{8} + \frac{177548}{493523} a^{7} - \frac{89319}{493523} a^{6} - \frac{1744759}{4441707} a^{5} - \frac{1760795}{4441707} a^{4} - \frac{173294}{1480569} a^{3} - \frac{78251}{493523} a^{2} - \frac{217577}{493523} a - \frac{198228}{493523}$, $\frac{1}{43879623453} a^{24} + \frac{230}{14626541151} a^{23} - \frac{49797948}{1625171239} a^{22} + \frac{527987263}{4875513717} a^{21} - \frac{753850151}{4875513717} a^{20} + \frac{795323070}{1625171239} a^{19} + \frac{179279665}{395311923} a^{18} - \frac{1171684882}{4875513717} a^{17} - \frac{1835762110}{4875513717} a^{16} + \frac{169487705}{1625171239} a^{15} + \frac{518493313}{1625171239} a^{14} + \frac{76921638}{1625171239} a^{13} + \frac{1579308958}{4875513717} a^{12} - \frac{219621981}{1625171239} a^{11} + \frac{103606132}{1625171239} a^{10} + \frac{187440899}{1625171239} a^{9} + \frac{16276968}{1625171239} a^{8} - \frac{643049080}{1625171239} a^{7} - \frac{9262981612}{43879623453} a^{6} - \frac{4565236685}{14626541151} a^{5} - \frac{555559661}{4875513717} a^{4} - \frac{1547031241}{4875513717} a^{3} - \frac{434676862}{4875513717} a^{2} - \frac{759332240}{1625171239} a + \frac{163059587}{1625171239}$, $\frac{1}{31549449262707} a^{25} + \frac{262}{31549449262707} a^{24} + \frac{289195}{10516483087569} a^{23} - \frac{551413479665}{10516483087569} a^{22} + \frac{159830335675}{3505494362523} a^{21} + \frac{307062368663}{3505494362523} a^{20} + \frac{2427047354005}{10516483087569} a^{19} - \frac{142815361529}{10516483087569} a^{18} + \frac{32339824831}{1168498120841} a^{17} + \frac{40209690094}{1168498120841} a^{16} + \frac{513814247806}{1168498120841} a^{15} + \frac{1786393993}{1168498120841} a^{14} + \frac{1641469425313}{3505494362523} a^{13} - \frac{1036215059591}{3505494362523} a^{12} - \frac{395873574516}{1168498120841} a^{11} + \frac{192433322493}{1168498120841} a^{10} + \frac{440083553587}{1168498120841} a^{9} + \frac{9824384655}{31581030293} a^{8} + \frac{394657350902}{852687817911} a^{7} + \frac{3545066259242}{31549449262707} a^{6} + \frac{3991843045292}{10516483087569} a^{5} + \frac{1683551514353}{10516483087569} a^{4} + \frac{1265478701705}{3505494362523} a^{3} - \frac{1326007610561}{3505494362523} a^{2} - \frac{546234587250}{1168498120841} a + \frac{379408093298}{1168498120841}$, $\frac{1}{357036489667700755103600561857904739658108158822167450033113272981981550435234861668289663162737764109} a^{26} - \frac{186731020815250989475435302269390567099732004552996654453685340680427537004083202794522}{13223573691396324263096317105848323691041042919339535186411602703036353719823513395121839376397694967} a^{25} - \frac{411448112709911384855652957130638674172887705396141085005526050573607812989359735798285088}{39670721074188972789288951317544971073123128758018605559234808109109061159470540185365518129193084901} a^{24} + \frac{59901032349507541328520797597306198985749529721798034947656394377945729714734752674070060279}{13223573691396324263096317105848323691041042919339535186411602703036353719823513395121839376397694967} a^{23} + \frac{1883656329595248327458395984333204641844867542335996440378371527221925193941444135533776593637931265}{39670721074188972789288951317544971073123128758018605559234808109109061159470540185365518129193084901} a^{22} + \frac{191354102424436915028602237794858715991505278093680571495986187048122770811299442783888312027923207}{4407857897132108087698772368616107897013680973113178395470534234345451239941171131707279792132564989} a^{21} - \frac{19458263643459643178262079880150725726585781403522443107105515036034901583729276130826605884974494226}{119012163222566918367866853952634913219369386274055816677704424327327183478411620556096554387579254703} a^{20} + \frac{1359766453836428621521974685895335372697485700676696159107413935292561791838694409346950120912713544}{4407857897132108087698772368616107897013680973113178395470534234345451239941171131707279792132564989} a^{19} + \frac{1119192287022971004670292729780524394222819351317477692147579308996978122101806161840177340577901232}{39670721074188972789288951317544971073123128758018605559234808109109061159470540185365518129193084901} a^{18} - \frac{457732148083764608598681958966642852267345781728499247684931153193845563948987805921548198819465044}{13223573691396324263096317105848323691041042919339535186411602703036353719823513395121839376397694967} a^{17} + \frac{4259795289795838815298396509235303665555911197894418869194105756070648328328590747348718982341223361}{13223573691396324263096317105848323691041042919339535186411602703036353719823513395121839376397694967} a^{16} + \frac{5185529003802966232014364158046305008918998958414761592695854499383801174786063105056174212275502415}{13223573691396324263096317105848323691041042919339535186411602703036353719823513395121839376397694967} a^{15} - \frac{5596348361023021292992102286236362415286152858852700460051735692395741234865967973911868847902238990}{39670721074188972789288951317544971073123128758018605559234808109109061159470540185365518129193084901} a^{14} - \frac{306016936310225922593498682006028849618797603725809213591289198008461248269996360951270522297173168}{4407857897132108087698772368616107897013680973113178395470534234345451239941171131707279792132564989} a^{13} - \frac{4910348563633192366684376021572819656327900068622239017933753238591943214879433809848987641021694377}{13223573691396324263096317105848323691041042919339535186411602703036353719823513395121839376397694967} a^{12} + \frac{5669971728859770528342782758613837081620645877328881890014410125902738238254968981626743844586367044}{13223573691396324263096317105848323691041042919339535186411602703036353719823513395121839376397694967} a^{11} + \frac{982655883395980759857208710822287077589606253254168081807880531869585475226907145447350389245972817}{4407857897132108087698772368616107897013680973113178395470534234345451239941171131707279792132564989} a^{10} + \frac{2732736670640675731436931284351018412075216696499894695899400651449676677502374755799113164089868316}{13223573691396324263096317105848323691041042919339535186411602703036353719823513395121839376397694967} a^{9} + \frac{78635082246087385908561813922277482571442555491312138241363669764394150290287814133826921910723204525}{357036489667700755103600561857904739658108158822167450033113272981981550435234861668289663162737764109} a^{8} - \frac{5352801915246816277222790665915942787377585127955888152880630133779823517596841811206356612477331920}{13223573691396324263096317105848323691041042919339535186411602703036353719823513395121839376397694967} a^{7} + \frac{3854264358617960335265656256415850525412880606218727447981885819679369265459927823755220611639482817}{39670721074188972789288951317544971073123128758018605559234808109109061159470540185365518129193084901} a^{6} + \frac{6557648520604958410985948776075318130275727644893814469307190927443321724035828637425047979332075531}{13223573691396324263096317105848323691041042919339535186411602703036353719823513395121839376397694967} a^{5} - \frac{19586396300343062897918609294125282922595405981564676096819751012531724661387305503317614805293570824}{39670721074188972789288951317544971073123128758018605559234808109109061159470540185365518129193084901} a^{4} + \frac{1276068129652528045359504138081259974991535289937263465373055226418296409996816825211580328608523317}{4407857897132108087698772368616107897013680973113178395470534234345451239941171131707279792132564989} a^{3} + \frac{411838476897099511313028499183846975152334344685954212733351933565058599635675606173361658808833131}{4407857897132108087698772368616107897013680973113178395470534234345451239941171131707279792132564989} a^{2} - \frac{1627343153947796799410250616740655541847563117088126341556786052491008074118629216301891931169288406}{4407857897132108087698772368616107897013680973113178395470534234345451239941171131707279792132564989} a + \frac{368854460835647721190529937877307017949367772137173198779624554396253908317100568155412971118025739}{4407857897132108087698772368616107897013680973113178395470534234345451239941171131707279792132564989}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3876170092409284400000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_9$ (as 27T2):
| An abelian group of order 27 |
| The 27 conjugacy class representatives for $C_3\times C_9$ |
| Character table for $C_3\times C_9$ is not computed |
Intermediate fields
| 3.3.8281.2, \(\Q(\zeta_{9})^+\), 3.3.670761.2, 3.3.670761.4, 9.9.301789003173921081.10, 9.9.17820338848416865911969.1, 9.9.151470380950257681.1, 9.9.3691950281939241.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{3}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{3}$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{3}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.22.2 | $x^{9} + 9 x^{7} + 3 x^{6} + 18 x^{5} + 51$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ |
| 3.9.22.2 | $x^{9} + 9 x^{7} + 3 x^{6} + 18 x^{5} + 51$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ | |
| 3.9.22.2 | $x^{9} + 9 x^{7} + 3 x^{6} + 18 x^{5} + 51$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ | |
| 7 | Data not computed | ||||||
| 13 | Data not computed | ||||||