Properties

Label 27.27.5659106580...6209.2
Degree $27$
Signature $[27, 0]$
Discriminant $3^{66}\cdot 7^{18}\cdot 13^{18}$
Root discriminant $296.70$
Ramified primes $3, 7, 13$
Class number $3$ (GRH)
Class group $[3]$ (GRH)
Galois group $C_3\times C_9$ (as 27T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-67976091, -1276399539, -3822753528, 10186413309, 28585642770, -49424314320, -50957966052, 90794275164, 39061121994, -81200156077, -14681285424, 40044205305, 2713319154, -11538409068, -229078692, 1997088057, 8431398, -211280076, -110106, 13841163, 0, -560310, 0, 13581, 0, -180, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^27 - 180*x^25 + 13581*x^23 - 560310*x^21 + 13841163*x^19 - 110106*x^18 - 211280076*x^17 + 8431398*x^16 + 1997088057*x^15 - 229078692*x^14 - 11538409068*x^13 + 2713319154*x^12 + 40044205305*x^11 - 14681285424*x^10 - 81200156077*x^9 + 39061121994*x^8 + 90794275164*x^7 - 50957966052*x^6 - 49424314320*x^5 + 28585642770*x^4 + 10186413309*x^3 - 3822753528*x^2 - 1276399539*x - 67976091)
 
gp: K = bnfinit(x^27 - 180*x^25 + 13581*x^23 - 560310*x^21 + 13841163*x^19 - 110106*x^18 - 211280076*x^17 + 8431398*x^16 + 1997088057*x^15 - 229078692*x^14 - 11538409068*x^13 + 2713319154*x^12 + 40044205305*x^11 - 14681285424*x^10 - 81200156077*x^9 + 39061121994*x^8 + 90794275164*x^7 - 50957966052*x^6 - 49424314320*x^5 + 28585642770*x^4 + 10186413309*x^3 - 3822753528*x^2 - 1276399539*x - 67976091, 1)
 

Normalized defining polynomial

\( x^{27} - 180 x^{25} + 13581 x^{23} - 560310 x^{21} + 13841163 x^{19} - 110106 x^{18} - 211280076 x^{17} + 8431398 x^{16} + 1997088057 x^{15} - 229078692 x^{14} - 11538409068 x^{13} + 2713319154 x^{12} + 40044205305 x^{11} - 14681285424 x^{10} - 81200156077 x^{9} + 39061121994 x^{8} + 90794275164 x^{7} - 50957966052 x^{6} - 49424314320 x^{5} + 28585642770 x^{4} + 10186413309 x^{3} - 3822753528 x^{2} - 1276399539 x - 67976091 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $27$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[27, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(5659106580522258442740055894009895600932750567734671570320232266209=3^{66}\cdot 7^{18}\cdot 13^{18}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $296.70$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 7, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(2457=3^{3}\cdot 7\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{2457}(256,·)$, $\chi_{2457}(1,·)$, $\chi_{2457}(835,·)$, $\chi_{2457}(1030,·)$, $\chi_{2457}(1738,·)$, $\chi_{2457}(2263,·)$, $\chi_{2457}(1933,·)$, $\chi_{2457}(781,·)$, $\chi_{2457}(16,·)$, $\chi_{2457}(1810,·)$, $\chi_{2457}(211,·)$, $\chi_{2457}(919,·)$, $\chi_{2457}(100,·)$, $\chi_{2457}(1114,·)$, $\chi_{2457}(991,·)$, $\chi_{2457}(1444,·)$, $\chi_{2457}(1894,·)$, $\chi_{2457}(295,·)$, $\chi_{2457}(1639,·)$, $\chi_{2457}(172,·)$, $\chi_{2457}(625,·)$, $\chi_{2457}(1075,·)$, $\chi_{2457}(820,·)$, $\chi_{2457}(1654,·)$, $\chi_{2457}(1600,·)$, $\chi_{2457}(1849,·)$, $\chi_{2457}(2419,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{19} a^{16} - \frac{1}{19} a^{15} - \frac{6}{19} a^{14} + \frac{3}{19} a^{13} - \frac{8}{19} a^{12} + \frac{9}{19} a^{11} - \frac{2}{19} a^{10} + \frac{1}{19} a^{7} - \frac{1}{19} a^{6} - \frac{6}{19} a^{5} + \frac{3}{19} a^{4} - \frac{8}{19} a^{3} + \frac{9}{19} a^{2} - \frac{2}{19} a$, $\frac{1}{19} a^{17} - \frac{7}{19} a^{15} - \frac{3}{19} a^{14} - \frac{5}{19} a^{13} + \frac{1}{19} a^{12} + \frac{7}{19} a^{11} - \frac{2}{19} a^{10} + \frac{1}{19} a^{8} - \frac{7}{19} a^{6} - \frac{3}{19} a^{5} - \frac{5}{19} a^{4} + \frac{1}{19} a^{3} + \frac{7}{19} a^{2} - \frac{2}{19} a$, $\frac{1}{19} a^{18} + \frac{9}{19} a^{15} - \frac{9}{19} a^{14} + \frac{3}{19} a^{13} + \frac{8}{19} a^{12} + \frac{4}{19} a^{11} + \frac{5}{19} a^{10} + \frac{1}{19} a^{9} + \frac{9}{19} a^{6} - \frac{9}{19} a^{5} + \frac{3}{19} a^{4} + \frac{8}{19} a^{3} + \frac{4}{19} a^{2} + \frac{5}{19} a$, $\frac{1}{19} a^{19} - \frac{1}{19} a$, $\frac{1}{57} a^{20} - \frac{1}{57} a^{2}$, $\frac{1}{57} a^{21} - \frac{1}{57} a^{3}$, $\frac{1}{3249} a^{22} - \frac{3}{361} a^{21} + \frac{4}{361} a^{19} - \frac{6}{361} a^{18} - \frac{7}{361} a^{17} + \frac{1}{1083} a^{16} + \frac{77}{361} a^{15} + \frac{111}{361} a^{14} + \frac{37}{361} a^{13} - \frac{45}{361} a^{12} - \frac{146}{361} a^{11} - \frac{118}{361} a^{10} + \frac{32}{361} a^{9} + \frac{145}{361} a^{8} + \frac{165}{361} a^{7} + \frac{58}{361} a^{6} + \frac{16}{361} a^{5} + \frac{332}{3249} a^{4} + \frac{148}{361} a^{3} - \frac{127}{361} a^{2} - \frac{65}{361} a + \frac{6}{19}$, $\frac{1}{11231793} a^{23} + \frac{1688}{11231793} a^{22} + \frac{7623}{1247977} a^{21} - \frac{22294}{3743931} a^{20} + \frac{11129}{1247977} a^{19} + \frac{6233}{1247977} a^{18} - \frac{96548}{3743931} a^{17} - \frac{16864}{3743931} a^{16} - \frac{397516}{1247977} a^{15} - \frac{402075}{1247977} a^{14} + \frac{248869}{1247977} a^{13} - \frac{491616}{1247977} a^{12} + \frac{407804}{1247977} a^{11} + \frac{267494}{1247977} a^{10} + \frac{481290}{1247977} a^{9} - \frac{456155}{1247977} a^{8} - \frac{331522}{1247977} a^{7} + \frac{142711}{1247977} a^{6} + \frac{1572200}{11231793} a^{5} - \frac{3725321}{11231793} a^{4} - \frac{218134}{1247977} a^{3} + \frac{1526659}{3743931} a^{2} + \frac{301490}{1247977} a + \frac{4077}{65683}$, $\frac{1}{572821443} a^{24} + \frac{5}{190940481} a^{23} + \frac{1352}{11231793} a^{22} - \frac{9154}{1116611} a^{21} - \frac{92286}{21215609} a^{20} + \frac{13796}{21215609} a^{19} - \frac{4975409}{190940481} a^{18} - \frac{155446}{63646827} a^{17} - \frac{537259}{21215609} a^{16} - \frac{10094649}{21215609} a^{15} + \frac{1488151}{21215609} a^{14} - \frac{10430081}{21215609} a^{13} + \frac{22796749}{63646827} a^{12} - \frac{1533273}{21215609} a^{11} + \frac{1358224}{21215609} a^{10} - \frac{1046477}{21215609} a^{9} + \frac{5399044}{21215609} a^{8} - \frac{2204528}{21215609} a^{7} + \frac{4614184}{33695379} a^{6} + \frac{25661407}{190940481} a^{5} + \frac{24020249}{190940481} a^{4} + \frac{3294365}{21215609} a^{3} + \frac{7914879}{21215609} a^{2} - \frac{9393080}{21215609} a - \frac{106068}{1116611}$, $\frac{1}{10883607417} a^{25} - \frac{1}{1209289713} a^{24} - \frac{103}{3627869139} a^{23} + \frac{429361}{3627869139} a^{22} - \frac{74743}{23711563} a^{21} - \frac{511837}{1209289713} a^{20} - \frac{77364254}{3627869139} a^{19} - \frac{8226770}{403096571} a^{18} - \frac{28201100}{1209289713} a^{17} - \frac{21898325}{1209289713} a^{16} + \frac{117921120}{403096571} a^{15} + \frac{16468066}{403096571} a^{14} + \frac{563195260}{1209289713} a^{13} - \frac{142818418}{403096571} a^{12} + \frac{290602}{403096571} a^{11} - \frac{86065546}{403096571} a^{10} - \frac{60386140}{403096571} a^{9} + \frac{48460270}{403096571} a^{8} + \frac{1504150127}{10883607417} a^{7} - \frac{375984611}{1209289713} a^{6} + \frac{1236287806}{3627869139} a^{5} + \frac{1359464429}{3627869139} a^{4} + \frac{138423008}{403096571} a^{3} + \frac{544167283}{1209289713} a^{2} + \frac{139456784}{403096571} a - \frac{6228391}{21215609}$, $\frac{1}{88093486350961317059489760743881440022748335958998324899660324847186140898367779777087032159669} a^{26} + \frac{138181918375522156172262048047420040356544474440527160367113725749132861124620715225}{29364495450320439019829920247960480007582778652999441633220108282395380299455926592362344053223} a^{25} - \frac{7136319723161315823459220819561959641881445611889264569299370897493748694947819376849}{9788165150106813006609973415986826669194259550999813877740036094131793433151975530787448017741} a^{24} - \frac{9142287610341104188693991308020399972769029357802086869585786568562527143301539432459}{1087573905567423667401108157331869629910473283444423764193337343792421492572441725643049779749} a^{23} + \frac{661709639690081314631246922882692236500794781662535835589746326667550945384466178960093940}{9788165150106813006609973415986826669194259550999813877740036094131793433151975530787448017741} a^{22} + \frac{8754510812239773722739499275883043146871396938316318865482958919832790987764200755440499122}{3262721716702271002203324471995608889731419850333271292580012031377264477717325176929149339247} a^{21} - \frac{199118432108317582153537239815403603281546350028446774778022148223711892481888431201166192529}{29364495450320439019829920247960480007582778652999441633220108282395380299455926592362344053223} a^{20} + \frac{10909568182644825973265897681948899953317127946714347082634808069796987618116759641032711043}{575774420594518412153527847999225098187897620647047875161178593772458437244233854752202824573} a^{19} + \frac{236566976562635974051804046467880410115529612136808618486386459338246067059313500506882148494}{9788165150106813006609973415986826669194259550999813877740036094131793433151975530787448017741} a^{18} + \frac{3790483315926778348594071297354178096601406937417298797349087563437886814687635705248426043}{3262721716702271002203324471995608889731419850333271292580012031377264477717325176929149339247} a^{17} + \frac{28951767593968732968640691280757333944060061476805674381315646835403938987145533096417135180}{3262721716702271002203324471995608889731419850333271292580012031377264477717325176929149339247} a^{16} + \frac{679377070075339146900505250100180049821572197376487084957866123257488764630303535430893662512}{3262721716702271002203324471995608889731419850333271292580012031377264477717325176929149339247} a^{15} - \frac{2555516918668061286966891340765227320786827666313194506174038782694917847472422235080126611049}{9788165150106813006609973415986826669194259550999813877740036094131793433151975530787448017741} a^{14} - \frac{567555132875259417304168581123977482300260624296852989440293041142796366178801235168458013990}{3262721716702271002203324471995608889731419850333271292580012031377264477717325176929149339247} a^{13} - \frac{1283495697101797504182112097527359885468731222350233287156584825517384449812680085586067147108}{3262721716702271002203324471995608889731419850333271292580012031377264477717325176929149339247} a^{12} - \frac{220691074278726116139072852526562594967767686325378127568827018271471187297658409299452408924}{3262721716702271002203324471995608889731419850333271292580012031377264477717325176929149339247} a^{11} + \frac{523201598793495424654797321305389418919613913735946088344012692420128636823941032293814812845}{1087573905567423667401108157331869629910473283444423764193337343792421492572441725643049779749} a^{10} - \frac{70941126717941059872186126908899572755606274597763996509367501852036374223711355340752440205}{191924806864839470717842615999741699395965873549015958387059531257486145748077951584067608191} a^{9} - \frac{31905752771172972582603733811824004540161086117266295283302152674331315224518526813113185806282}{88093486350961317059489760743881440022748335958998324899660324847186140898367779777087032159669} a^{8} + \frac{5989224048192756313658831000332717058568390779284540514872703970423746140898051844311122732472}{29364495450320439019829920247960480007582778652999441633220108282395380299455926592362344053223} a^{7} + \frac{185552298546429162899222708489169033512928040515017628519817030837893180939520860995984056604}{515166586847727000347893337683517193115487344789463888302107162849041759639577659515128843039} a^{6} - \frac{53009444645903757361400061873395410080758930782805483172253486121491890395002876461881731415}{171722195615909000115964445894505731038495781596487962767369054283013919879859219838376281013} a^{5} - \frac{3508576310575137608487370088273843837411643089342990478874067642959706443978633265740488236663}{9788165150106813006609973415986826669194259550999813877740036094131793433151975530787448017741} a^{4} + \frac{764354136325036636821905933470817236224000904797231292544302425701525803379677910591119357165}{3262721716702271002203324471995608889731419850333271292580012031377264477717325176929149339247} a^{3} + \frac{509680521931246010666746462342253110666452032343292698561760564476558114606437727832063052477}{1087573905567423667401108157331869629910473283444423764193337343792421492572441725643049779749} a^{2} - \frac{331018693843889307498204841749049332925085054909426159576112596456140807668063220735993155479}{1087573905567423667401108157331869629910473283444423764193337343792421492572441725643049779749} a + \frac{10800287278515711040153461674111013643275366012892909483170689756761577586827348095657716999}{57240731871969666705321481964835243679498593865495987589123018094337973293286406612792093671}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $26$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 20448691760823430000000000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3\times C_9$ (as 27T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 27
The 27 conjugacy class representatives for $C_3\times C_9$
Character table for $C_3\times C_9$ is not computed

Intermediate fields

3.3.8281.2, \(\Q(\zeta_{9})^+\), 3.3.670761.2, 3.3.670761.4, 9.9.301789003173921081.10, 9.9.3691950281939241.2, 9.9.151470380950257681.2, 9.9.17820338848416865911969.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }^{3}$ R ${\href{/LocalNumberField/5.9.0.1}{9} }^{3}$ R ${\href{/LocalNumberField/11.9.0.1}{9} }^{3}$ R ${\href{/LocalNumberField/17.3.0.1}{3} }^{9}$ ${\href{/LocalNumberField/19.1.0.1}{1} }^{27}$ ${\href{/LocalNumberField/23.9.0.1}{9} }^{3}$ ${\href{/LocalNumberField/29.9.0.1}{9} }^{3}$ ${\href{/LocalNumberField/31.9.0.1}{9} }^{3}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{9}$ ${\href{/LocalNumberField/41.9.0.1}{9} }^{3}$ ${\href{/LocalNumberField/43.9.0.1}{9} }^{3}$ ${\href{/LocalNumberField/47.9.0.1}{9} }^{3}$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{9}$ ${\href{/LocalNumberField/59.9.0.1}{9} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.9.22.6$x^{9} + 9 x^{8} + 21 x^{6} + 18 x^{5} + 9 x^{3} + 24$$9$$1$$22$$C_9$$[2, 3]$
3.9.22.6$x^{9} + 9 x^{8} + 21 x^{6} + 18 x^{5} + 9 x^{3} + 24$$9$$1$$22$$C_9$$[2, 3]$
3.9.22.6$x^{9} + 9 x^{8} + 21 x^{6} + 18 x^{5} + 9 x^{3} + 24$$9$$1$$22$$C_9$$[2, 3]$
7Data not computed
13Data not computed