Normalized defining polynomial
\( x^{27} - 45 x^{25} + 837 x^{23} - 8430 x^{21} + 50652 x^{19} - 193 x^{18} - 188811 x^{17} + 2934 x^{16} + 441720 x^{15} - 15822 x^{14} - 646731 x^{13} + 37506 x^{12} + 585063 x^{11} - 42453 x^{10} - 319331 x^{9} + 24462 x^{8} + 99963 x^{7} - 7245 x^{6} - 16119 x^{5} + 1080 x^{4} + 1059 x^{3} - 81 x^{2} - 18 x + 1 \)
Invariants
Degree: | $27$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[27, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(50323116815004832630295337440131512593194174521\)\(\medspace = 3^{66}\cdot 7^{18}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $53.67$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $3, 7$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Gal(K/\Q)|$: | $27$ | ||
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(189=3^{3}\cdot 7\) | ||
Dirichlet character group: | $\lbrace$$\chi_{189}(64,·)$, $\chi_{189}(1,·)$, $\chi_{189}(130,·)$, $\chi_{189}(67,·)$, $\chi_{189}(4,·)$, $\chi_{189}(142,·)$, $\chi_{189}(79,·)$, $\chi_{189}(16,·)$, $\chi_{189}(148,·)$, $\chi_{189}(85,·)$, $\chi_{189}(22,·)$, $\chi_{189}(151,·)$, $\chi_{189}(88,·)$, $\chi_{189}(25,·)$, $\chi_{189}(163,·)$, $\chi_{189}(100,·)$, $\chi_{189}(37,·)$, $\chi_{189}(169,·)$, $\chi_{189}(106,·)$, $\chi_{189}(43,·)$, $\chi_{189}(172,·)$, $\chi_{189}(109,·)$, $\chi_{189}(46,·)$, $\chi_{189}(184,·)$, $\chi_{189}(121,·)$, $\chi_{189}(58,·)$, $\chi_{189}(127,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $\frac{1}{6572051699031783636148040372400866530872797} a^{26} - \frac{3128161542052233584117625196754683002257122}{6572051699031783636148040372400866530872797} a^{25} + \frac{2569691265818507607056039605209773585422534}{6572051699031783636148040372400866530872797} a^{24} + \frac{2774681163185792832662405554343946928493372}{6572051699031783636148040372400866530872797} a^{23} + \frac{1454777682648645288668097496809188348046066}{6572051699031783636148040372400866530872797} a^{22} + \frac{1694389064104381340725743221609596918381309}{6572051699031783636148040372400866530872797} a^{21} + \frac{1978027081260875059152436659686064584709554}{6572051699031783636148040372400866530872797} a^{20} + \frac{1563192202820656498208988469452317902549175}{6572051699031783636148040372400866530872797} a^{19} - \frac{1365959405605485581057798212081872268857849}{6572051699031783636148040372400866530872797} a^{18} - \frac{2705917195863283295942289316564958167920850}{6572051699031783636148040372400866530872797} a^{17} - \frac{1739799140668879090576627029453840469415116}{6572051699031783636148040372400866530872797} a^{16} + \frac{594331372401851110066806380016232586911282}{6572051699031783636148040372400866530872797} a^{15} - \frac{2337347656597575200150116187211243713948911}{6572051699031783636148040372400866530872797} a^{14} - \frac{2630134618704916679327749160767056611937588}{6572051699031783636148040372400866530872797} a^{13} + \frac{1467534671506952570156185074642065836617494}{6572051699031783636148040372400866530872797} a^{12} + \frac{1967064295859597746570152556470827151367232}{6572051699031783636148040372400866530872797} a^{11} - \frac{2176561166100209722329943228621379902286173}{6572051699031783636148040372400866530872797} a^{10} + \frac{2502256983355177077064058537443154872705816}{6572051699031783636148040372400866530872797} a^{9} + \frac{3022239167622824187757096378197236468805472}{6572051699031783636148040372400866530872797} a^{8} + \frac{1852917314222978828288216900482185401091718}{6572051699031783636148040372400866530872797} a^{7} + \frac{23280823669944550123817670601448927019797}{6572051699031783636148040372400866530872797} a^{6} + \frac{3282202200872936776644303109046507838580716}{6572051699031783636148040372400866530872797} a^{5} - \frac{3050372896729224631797033839455054423822405}{6572051699031783636148040372400866530872797} a^{4} + \frac{3008149247626434564389768126125792597694940}{6572051699031783636148040372400866530872797} a^{3} + \frac{1711534243682350508413812638647972427747685}{6572051699031783636148040372400866530872797} a^{2} + \frac{6386274974164382911762239736463906360227}{6572051699031783636148040372400866530872797} a + \frac{3078692040347290382348439189636650455637611}{6572051699031783636148040372400866530872797}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $26$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 347763474421246.5 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_3\times C_9$ (as 27T2):
An abelian group of order 27 |
The 27 conjugacy class representatives for $C_3\times C_9$ |
Character table for $C_3\times C_9$ is not computed |
Intermediate fields
3.3.3969.1, \(\Q(\zeta_{9})^+\), 3.3.3969.2, \(\Q(\zeta_{7})^+\), 9.9.62523502209.1, \(\Q(\zeta_{27})^+\), 9.9.3691950281939241.2, 9.9.3691950281939241.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{3}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{3}$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
3 | Data not computed | ||||||
7 | Data not computed |