Normalized defining polynomial
\( x^{27} - 837 x^{25} + 311364 x^{23} - 67834107 x^{21} + 9600000795 x^{19} - 925265531169 x^{17} + 61919356816008 x^{15} - 2879250091944372 x^{13} + 91605614767388046 x^{11} - 1928241644177736030 x^{9} + 25316678528262981288 x^{7} - 187285883203400009301 x^{5} + 645095819922822254259 x^{3} - 659273750031016149957 x - 209910532282507790711 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(494206476726811255379944367361178473261552448264840656699721419592855929=3^{94}\cdot 31^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $452.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2511=3^{4}\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2511}(1,·)$, $\chi_{2511}(67,·)$, $\chi_{2511}(838,·)$, $\chi_{2511}(583,·)$, $\chi_{2511}(904,·)$, $\chi_{2511}(1675,·)$, $\chi_{2511}(1420,·)$, $\chi_{2511}(1741,·)$, $\chi_{2511}(2257,·)$, $\chi_{2511}(280,·)$, $\chi_{2511}(25,·)$, $\chi_{2511}(346,·)$, $\chi_{2511}(1117,·)$, $\chi_{2511}(862,·)$, $\chi_{2511}(1183,·)$, $\chi_{2511}(1954,·)$, $\chi_{2511}(1699,·)$, $\chi_{2511}(2020,·)$, $\chi_{2511}(559,·)$, $\chi_{2511}(304,·)$, $\chi_{2511}(625,·)$, $\chi_{2511}(1396,·)$, $\chi_{2511}(1141,·)$, $\chi_{2511}(1462,·)$, $\chi_{2511}(2233,·)$, $\chi_{2511}(1978,·)$, $\chi_{2511}(2299,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{31} a^{3}$, $\frac{1}{31} a^{4}$, $\frac{1}{31} a^{5}$, $\frac{1}{961} a^{6}$, $\frac{1}{961} a^{7}$, $\frac{1}{961} a^{8}$, $\frac{1}{29791} a^{9}$, $\frac{1}{29791} a^{10}$, $\frac{1}{29791} a^{11}$, $\frac{1}{923521} a^{12}$, $\frac{1}{923521} a^{13}$, $\frac{1}{3485274978379} a^{14} - \frac{1069959}{3485274978379} a^{13} - \frac{14}{112428225109} a^{12} - \frac{1186129}{112428225109} a^{11} + \frac{77}{3626716939} a^{10} - \frac{1071056}{112428225109} a^{9} - \frac{210}{116990869} a^{8} + \frac{306195}{3626716939} a^{7} + \frac{294}{3773899} a^{6} + \frac{1529722}{116990869} a^{5} - \frac{6076}{3773899} a^{4} - \frac{1067297}{116990869} a^{3} + \frac{47089}{3773899} a^{2} + \frac{152471}{3773899} a - \frac{59582}{3773899}$, $\frac{1}{108043524329749} a^{15} - \frac{15}{3485274978379} a^{13} - \frac{1069959}{3485274978379} a^{12} + \frac{90}{112428225109} a^{11} + \frac{1517811}{112428225109} a^{10} - \frac{275}{3626716939} a^{9} - \frac{1169301}{3626716939} a^{8} + \frac{450}{116990869} a^{7} + \frac{1381032}{3626716939} a^{6} - \frac{378}{3773899} a^{5} + \frac{592232}{116990869} a^{4} + \frac{4340}{3773899} a^{3} + \frac{1522160}{3773899} a^{2} - \frac{14415}{3773899} a + \frac{313757}{3773899}$, $\frac{1}{108043524329749} a^{16} + \frac{1750151}{3485274978379} a^{13} - \frac{120}{112428225109} a^{12} - \frac{1178528}{112428225109} a^{11} + \frac{880}{3626716939} a^{10} + \frac{520415}{112428225109} a^{9} - \frac{2700}{116990869} a^{8} - \frac{1573841}{3626716939} a^{7} + \frac{100853}{3626716939} a^{6} + \frac{894668}{116990869} a^{5} + \frac{1083099}{116990869} a^{4} + \frac{986313}{116990869} a^{3} + \frac{691920}{3773899} a^{2} - \frac{1173077}{3773899} a - \frac{893730}{3773899}$, $\frac{1}{108043524329749} a^{17} - \frac{136}{112428225109} a^{13} - \frac{1557442}{3485274978379} a^{12} + \frac{1088}{3626716939} a^{11} + \frac{616171}{112428225109} a^{10} + \frac{179759}{112428225109} a^{9} - \frac{1491912}{3626716939} a^{8} - \frac{1274390}{3626716939} a^{7} - \frac{728744}{3626716939} a^{6} - \frac{1715333}{116990869} a^{5} - \frac{1423480}{116990869} a^{4} + \frac{668933}{116990869} a^{3} + \frac{372846}{3773899} a^{2} + \frac{457540}{3773899} a + \frac{893613}{3773899}$, $\frac{1}{3349349254222219} a^{18} - \frac{1426070}{3485274978379} a^{13} - \frac{816}{112428225109} a^{12} - \frac{720352}{112428225109} a^{11} + \frac{6732}{3626716939} a^{10} + \frac{26533}{112428225109} a^{9} - \frac{22032}{116990869} a^{8} - \frac{1354741}{3626716939} a^{7} - \frac{1029699}{3626716939} a^{6} + \frac{918783}{116990869} a^{5} - \frac{881886}{116990869} a^{4} - \frac{1371384}{116990869} a^{3} - \frac{1372412}{3773899} a^{2} - \frac{661125}{3773899} a - \frac{555354}{3773899}$, $\frac{1}{3349349254222219} a^{19} - \frac{969}{112428225109} a^{13} + \frac{317538}{3485274978379} a^{12} + \frac{8721}{3626716939} a^{11} - \frac{1275}{112428225109} a^{10} - \frac{538705}{112428225109} a^{9} - \frac{1278901}{3626716939} a^{8} - \frac{735945}{3626716939} a^{7} - \frac{1226476}{3626716939} a^{6} - \frac{1224599}{116990869} a^{5} + \frac{822920}{116990869} a^{4} - \frac{1380680}{116990869} a^{3} - \frac{1209701}{3773899} a^{2} + \frac{572731}{3773899} a + \frac{1233245}{3773899}$, $\frac{1}{3349349254222219} a^{20} - \frac{1656979}{3485274978379} a^{13} - \frac{882146}{3485274978379} a^{12} - \frac{749847}{112428225109} a^{11} - \frac{539693}{112428225109} a^{10} + \frac{904749}{112428225109} a^{9} - \frac{47087}{3626716939} a^{8} - \frac{426734}{3626716939} a^{7} - \frac{683604}{3626716939} a^{6} + \frac{1147854}{116990869} a^{5} + \frac{1441936}{116990869} a^{4} - \frac{1024319}{116990869} a^{3} - \frac{132923}{3773899} a^{2} - \frac{203772}{3773899} a - \frac{955572}{3773899}$, $\frac{1}{103829826880888789} a^{21} - \frac{5985}{112428225109} a^{13} - \frac{1304159}{3485274978379} a^{12} + \frac{57456}{3626716939} a^{11} + \frac{1738776}{112428225109} a^{10} + \frac{446894}{112428225109} a^{9} - \frac{1389341}{3626716939} a^{8} - \frac{1864995}{3626716939} a^{7} - \frac{289338}{3626716939} a^{6} - \frac{55551}{116990869} a^{5} - \frac{414040}{116990869} a^{4} - \frac{437864}{116990869} a^{3} - \frac{733060}{3773899} a^{2} - \frac{1082910}{3773899} a + \frac{457118}{3773899}$, $\frac{1}{103829826880888789} a^{22} - \frac{1512026}{3485274978379} a^{13} + \frac{1110319}{3485274978379} a^{12} + \frac{667148}{112428225109} a^{11} + \frac{1772756}{112428225109} a^{10} - \frac{1505898}{112428225109} a^{9} + \frac{1723734}{3626716939} a^{8} + \frac{1098340}{3626716939} a^{7} - \frac{1233501}{3626716939} a^{6} + \frac{482935}{116990869} a^{5} - \frac{763584}{116990869} a^{4} - \frac{775932}{116990869} a^{3} - \frac{1001480}{3773899} a^{2} + \frac{17199}{3773899} a - \frac{796199}{3773899}$, $\frac{1}{103829826880888789} a^{23} + \frac{1628402}{3485274978379} a^{13} - \frac{1522664}{3485274978379} a^{12} - \frac{1188424}{112428225109} a^{11} - \frac{147280}{112428225109} a^{10} - \frac{831610}{112428225109} a^{9} + \frac{137672}{3626716939} a^{8} - \frac{813953}{3626716939} a^{7} + \frac{810271}{3626716939} a^{6} + \frac{1262876}{116990869} a^{5} + \frac{1116746}{116990869} a^{4} + \frac{1700273}{116990869} a^{3} + \frac{1430979}{3773899} a^{2} - \frac{622065}{3773899} a + \frac{983796}{3773899}$, $\frac{1}{3218724633307552459} a^{24} + \frac{470317}{3485274978379} a^{13} - \frac{1034190}{3485274978379} a^{12} - \frac{1279168}{112428225109} a^{11} + \frac{585751}{112428225109} a^{10} + \frac{1429564}{112428225109} a^{9} + \frac{948128}{3626716939} a^{8} + \frac{236889}{3626716939} a^{7} - \frac{1022084}{3626716939} a^{6} + \frac{1413330}{116990869} a^{5} + \frac{766563}{116990869} a^{4} - \frac{1047768}{116990869} a^{3} + \frac{1506346}{3773899} a^{2} + \frac{1759750}{3773899} a + \frac{1226373}{3773899}$, $\frac{1}{3218724633307552459} a^{25} - \frac{367645}{3485274978379} a^{13} - \frac{1588186}{3485274978379} a^{12} - \frac{531536}{112428225109} a^{11} - \frac{369112}{112428225109} a^{10} - \frac{1219093}{112428225109} a^{9} + \frac{1368470}{3626716939} a^{8} - \frac{1523958}{3626716939} a^{7} + \frac{740853}{3626716939} a^{6} - \frac{1163850}{116990869} a^{5} + \frac{1249857}{116990869} a^{4} - \frac{746802}{116990869} a^{3} + \frac{241869}{3773899} a^{2} - \frac{622035}{3773899} a + \frac{1227419}{3773899}$, $\frac{1}{3218724633307552459} a^{26} - \frac{1850274}{3485274978379} a^{13} + \frac{1337707}{3485274978379} a^{12} - \frac{735867}{112428225109} a^{11} + \frac{804954}{112428225109} a^{10} + \frac{1148221}{112428225109} a^{9} + \frac{1532957}{3626716939} a^{8} + \frac{168357}{3626716939} a^{7} + \frac{1075994}{3626716939} a^{6} - \frac{1856130}{116990869} a^{5} - \frac{1615671}{116990869} a^{4} + \frac{919202}{116990869} a^{3} + \frac{538657}{3773899} a^{2} - \frac{1067532}{3773899} a - \frac{1314594}{3773899}$
Class group and class number
Not computed
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 27 |
| The 27 conjugacy class representatives for $C_{27}$ |
| Character table for $C_{27}$ is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $27$ | R | $27$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{3}$ | $27$ | $27$ | R | ${\href{/LocalNumberField/37.9.0.1}{9} }^{3}$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{27}$ | $27$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 31 | Data not computed | ||||||