Normalized defining polynomial
\( x^{27} - 837 x^{25} + 311364 x^{23} - 67834107 x^{21} + 9600000795 x^{19} - 925265531169 x^{17} + 61919356816008 x^{15} - 2879250091944372 x^{13} + 91605614767388046 x^{11} - 1928241644177736030 x^{9} + 25316678528262981288 x^{7} - 187285883203400009301 x^{5} + 645095819922822254259 x^{3} - 659273750031016149957 x - 254625961590055084699 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(494206476726811255379944367361178473261552448264840656699721419592855929=3^{94}\cdot 31^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $452.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2511=3^{4}\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2511}(1885,·)$, $\chi_{2511}(1,·)$, $\chi_{2511}(1675,·)$, $\chi_{2511}(1606,·)$, $\chi_{2511}(769,·)$, $\chi_{2511}(1396,·)$, $\chi_{2511}(2443,·)$, $\chi_{2511}(718,·)$, $\chi_{2511}(1048,·)$, $\chi_{2511}(1555,·)$, $\chi_{2511}(280,·)$, $\chi_{2511}(559,·)$, $\chi_{2511}(1117,·)$, $\chi_{2511}(997,·)$, $\chi_{2511}(160,·)$, $\chi_{2511}(1954,·)$, $\chi_{2511}(2392,·)$, $\chi_{2511}(838,·)$, $\chi_{2511}(2113,·)$, $\chi_{2511}(1834,·)$, $\chi_{2511}(1327,·)$, $\chi_{2511}(211,·)$, $\chi_{2511}(2164,·)$, $\chi_{2511}(439,·)$, $\chi_{2511}(2233,·)$, $\chi_{2511}(1276,·)$, $\chi_{2511}(490,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{31} a^{3}$, $\frac{1}{31} a^{4}$, $\frac{1}{31} a^{5}$, $\frac{1}{961} a^{6}$, $\frac{1}{961} a^{7}$, $\frac{1}{961} a^{8}$, $\frac{1}{29791} a^{9}$, $\frac{1}{29791} a^{10}$, $\frac{1}{29791} a^{11}$, $\frac{1}{923521} a^{12}$, $\frac{1}{923521} a^{13}$, $\frac{1}{1923390404591} a^{14} + \frac{590462}{1923390404591} a^{13} - \frac{14}{62044851761} a^{12} + \frac{654678}{62044851761} a^{11} + \frac{77}{2001446831} a^{10} + \frac{575789}{62044851761} a^{9} - \frac{210}{64562801} a^{8} - \frac{132291}{2001446831} a^{7} + \frac{294}{2082671} a^{6} - \frac{886996}{64562801} a^{5} - \frac{6076}{2082671} a^{4} - \frac{830259}{64562801} a^{3} + \frac{47089}{2082671} a^{2} - \frac{178916}{2082671} a - \frac{59582}{2082671}$, $\frac{1}{59625102542321} a^{15} - \frac{15}{1923390404591} a^{13} + \frac{590462}{1923390404591} a^{12} + \frac{90}{62044851761} a^{11} - \frac{837531}{62044851761} a^{10} - \frac{275}{2001446831} a^{9} + \frac{644883}{2001446831} a^{8} + \frac{450}{64562801} a^{7} - \frac{735800}{2001446831} a^{6} - \frac{378}{2082671} a^{5} - \frac{351523}{64562801} a^{4} + \frac{4340}{2082671} a^{3} - \frac{831556}{2082671} a^{2} - \frac{14415}{2082671} a - \frac{187731}{2082671}$, $\frac{1}{59625102542321} a^{16} - \frac{965963}{1923390404591} a^{13} - \frac{120}{62044851761} a^{12} + \frac{651955}{62044851761} a^{11} + \frac{880}{2001446831} a^{10} - \frac{529186}{62044851761} a^{9} - \frac{2700}{64562801} a^{8} - \frac{637494}{2001446831} a^{7} - \frac{290590}{2001446831} a^{6} + \frac{922234}{64562801} a^{5} - \frac{608129}{64562801} a^{4} - \frac{744043}{64562801} a^{3} + \frac{691920}{2082671} a^{2} - \frac{788800}{2082671} a - \frac{893730}{2082671}$, $\frac{1}{59625102542321} a^{17} - \frac{136}{62044851761} a^{13} + \frac{855495}{1923390404591} a^{12} + \frac{1088}{2001446831} a^{11} - \frac{292302}{62044851761} a^{10} + \frac{571202}{62044851761} a^{9} + \frac{609796}{2001446831} a^{8} + \frac{25395}{2001446831} a^{7} - \frac{551080}{2001446831} a^{6} + \frac{758781}{64562801} a^{5} + \frac{633031}{64562801} a^{4} + \frac{8465}{2082671} a^{3} - \frac{91733}{2082671} a^{2} - \frac{842245}{2082671} a + \frac{605619}{2082671}$, $\frac{1}{1848378178811951} a^{18} + \frac{785833}{1923390404591} a^{13} - \frac{816}{62044851761} a^{12} + \frac{412487}{62044851761} a^{11} + \frac{6732}{2001446831} a^{10} - \frac{224398}{62044851761} a^{9} - \frac{22032}{64562801} a^{8} - \frac{71509}{2001446831} a^{7} - \frac{387344}{2001446831} a^{6} - \frac{487947}{64562801} a^{5} - \frac{615899}{64562801} a^{4} - \frac{542723}{64562801} a^{3} - \frac{72627}{2082671} a^{2} - \frac{261549}{2082671} a + \frac{227532}{2082671}$, $\frac{1}{1848378178811951} a^{19} - \frac{969}{62044851761} a^{13} - \frac{215451}{1923390404591} a^{12} + \frac{8721}{2001446831} a^{11} + \frac{478802}{62044851761} a^{10} + \frac{510168}{62044851761} a^{9} + \frac{661345}{2001446831} a^{8} - \frac{359577}{2001446831} a^{7} + \frac{136144}{2001446831} a^{6} - \frac{301182}{64562801} a^{5} + \frac{389855}{64562801} a^{4} + \frac{159798}{64562801} a^{3} + \frac{546642}{2082671} a^{2} - \frac{711979}{2082671} a + \frac{975055}{2082671}$, $\frac{1}{1848378178811951} a^{20} + \frac{646331}{1923390404591} a^{13} - \frac{490703}{1923390404591} a^{12} - \frac{311009}{62044851761} a^{11} - \frac{680224}{62044851761} a^{10} - \frac{781899}{62044851761} a^{9} - \frac{142393}{2001446831} a^{8} - \frac{16937}{2001446831} a^{7} - \frac{851457}{2001446831} a^{6} - \frac{472886}{64562801} a^{5} + \frac{751021}{64562801} a^{4} + \frac{119658}{64562801} a^{3} - \frac{339117}{2082671} a^{2} - \frac{191489}{2082671} a - \frac{769309}{2082671}$, $\frac{1}{57299723543170481} a^{21} - \frac{5985}{62044851761} a^{13} + \frac{406941}{1923390404591} a^{12} - \frac{301535}{62044851761} a^{11} + \frac{661675}{62044851761} a^{10} - \frac{541679}{62044851761} a^{9} + \frac{1027178}{2001446831} a^{8} + \frac{769581}{2001446831} a^{7} + \frac{742639}{2001446831} a^{6} + \frac{34899}{64562801} a^{5} - \frac{28183}{2082671} a^{4} - \frac{504541}{64562801} a^{3} - \frac{912108}{2082671} a^{2} + \frac{603462}{2082671} a + \frac{976266}{2082671}$, $\frac{1}{57299723543170481} a^{22} - \frac{885831}{1923390404591} a^{13} - \frac{314922}{1923390404591} a^{12} + \frac{806343}{62044851761} a^{11} + \frac{804114}{62044851761} a^{10} - \frac{994377}{62044851761} a^{9} + \frac{885911}{2001446831} a^{8} + \frac{409689}{2001446831} a^{7} + \frac{198489}{2001446831} a^{6} + \frac{29136}{2082671} a^{5} + \frac{84379}{64562801} a^{4} - \frac{626346}{64562801} a^{3} + \frac{456232}{2082671} a^{2} - \frac{593396}{2082671} a + \frac{271298}{2082671}$, $\frac{1}{57299723543170481} a^{23} + \frac{986047}{1923390404591} a^{13} + \frac{848062}{1923390404591} a^{12} + \frac{17835}{2001446831} a^{11} - \frac{426845}{62044851761} a^{10} - \frac{241736}{62044851761} a^{9} + \frac{565878}{2001446831} a^{8} + \frac{461496}{2001446831} a^{7} - \frac{438685}{2001446831} a^{6} + \frac{818873}{64562801} a^{5} + \frac{976983}{64562801} a^{4} + \frac{675864}{64562801} a^{3} + \frac{567775}{2082671} a^{2} + \frac{112531}{2082671} a - \frac{534160}{2082671}$, $\frac{1}{1776291429838284911} a^{24} + \frac{158186}{1923390404591} a^{13} - \frac{7134}{62044851761} a^{12} - \frac{975536}{62044851761} a^{11} - \frac{890078}{62044851761} a^{10} - \frac{312579}{62044851761} a^{9} - \frac{174599}{2001446831} a^{8} + \frac{293643}{2001446831} a^{7} + \frac{711880}{2001446831} a^{6} - \frac{573915}{64562801} a^{5} - \frac{533910}{64562801} a^{4} - \frac{461406}{64562801} a^{3} + \frac{713613}{2082671} a^{2} + \frac{609673}{2082671} a - \frac{48276}{2082671}$, $\frac{1}{1776291429838284911} a^{25} + \frac{585922}{1923390404591} a^{13} + \frac{923030}{1923390404591} a^{12} - \frac{968711}{62044851761} a^{11} - \frac{939110}{62044851761} a^{10} + \frac{527533}{62044851761} a^{9} - \frac{837642}{2001446831} a^{8} + \frac{617798}{2001446831} a^{7} + \frac{66339}{2001446831} a^{6} + \frac{270076}{64562801} a^{5} + \frac{129484}{64562801} a^{4} - \frac{753135}{64562801} a^{3} - \frac{579385}{2082671} a^{2} + \frac{541881}{2082671} a + \frac{951977}{2082671}$, $\frac{1}{1776291429838284911} a^{26} - \frac{859769}{1923390404591} a^{13} - \frac{668361}{1923390404591} a^{12} - \frac{672104}{62044851761} a^{11} - \frac{596040}{62044851761} a^{10} - \frac{707360}{62044851761} a^{9} - \frac{483254}{2001446831} a^{8} - \frac{575637}{2001446831} a^{7} + \frac{342430}{2001446831} a^{6} + \frac{878456}{64562801} a^{5} + \frac{434807}{64562801} a^{4} - \frac{412607}{64562801} a^{3} - \frac{796440}{2082671} a^{2} + \frac{527744}{2082671} a + \frac{673302}{2082671}$
Class group and class number
Not computed
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 27 |
| The 27 conjugacy class representatives for $C_{27}$ |
| Character table for $C_{27}$ is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $27$ | R | $27$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{3}$ | $27$ | $27$ | R | ${\href{/LocalNumberField/37.9.0.1}{9} }^{3}$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{9}$ | $27$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 31 | Data not computed | ||||||