Normalized defining polynomial
\( x^{27} - 489 x^{25} - 326 x^{24} + 90954 x^{23} + 83130 x^{22} - 8577060 x^{21} - 8185860 x^{20} + 457201308 x^{19} + 385246262 x^{18} - 14492079306 x^{17} - 8421714480 x^{16} + 279857702460 x^{15} + 47349669510 x^{14} - 3313822863408 x^{13} + 1147496197436 x^{12} + 23285753737722 x^{11} - 21143039489730 x^{10} - 86802211852084 x^{9} + 132948531325152 x^{8} + 118272316935156 x^{7} - 329718615030309 x^{6} + 77698876603932 x^{5} + 245143951250058 x^{4} - 197708702495375 x^{3} + 29863417968666 x^{2} + 13068822764814 x - 3091197936923 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(493449694474834715367307491089920591429543598652017227708295844390723767289=3^{36}\cdot 163^{26}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $584.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 163$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1467=3^{2}\cdot 163\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1467}(1,·)$, $\chi_{1467}(1093,·)$, $\chi_{1467}(880,·)$, $\chi_{1467}(961,·)$, $\chi_{1467}(778,·)$, $\chi_{1467}(1291,·)$, $\chi_{1467}(1036,·)$, $\chi_{1467}(1039,·)$, $\chi_{1467}(403,·)$, $\chi_{1467}(919,·)$, $\chi_{1467}(25,·)$, $\chi_{1467}(673,·)$, $\chi_{1467}(379,·)$, $\chi_{1467}(1063,·)$, $\chi_{1467}(553,·)$, $\chi_{1467}(622,·)$, $\chi_{1467}(688,·)$, $\chi_{1467}(625,·)$, $\chi_{1467}(1462,·)$, $\chi_{1467}(169,·)$, $\chi_{1467}(1273,·)$, $\chi_{1467}(1018,·)$, $\chi_{1467}(955,·)$, $\chi_{1467}(1276,·)$, $\chi_{1467}(970,·)$, $\chi_{1467}(1342,·)$, $\chi_{1467}(511,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{23} a^{16} + \frac{10}{23} a^{15} + \frac{7}{23} a^{14} - \frac{7}{23} a^{13} + \frac{1}{23} a^{12} + \frac{6}{23} a^{11} + \frac{2}{23} a^{10} - \frac{3}{23} a^{9} - \frac{4}{23} a^{8} - \frac{2}{23} a^{7} - \frac{9}{23} a^{6} - \frac{11}{23} a^{5} - \frac{6}{23} a^{4} + \frac{4}{23} a^{3} - \frac{8}{23} a^{2} - \frac{4}{23} a$, $\frac{1}{23} a^{17} - \frac{1}{23} a^{15} - \frac{8}{23} a^{14} + \frac{2}{23} a^{13} - \frac{4}{23} a^{12} + \frac{11}{23} a^{11} + \frac{3}{23} a^{9} - \frac{8}{23} a^{8} + \frac{11}{23} a^{7} + \frac{10}{23} a^{6} - \frac{11}{23} a^{5} - \frac{5}{23} a^{4} - \frac{2}{23} a^{3} + \frac{7}{23} a^{2} - \frac{6}{23} a$, $\frac{1}{23} a^{18} + \frac{2}{23} a^{15} + \frac{9}{23} a^{14} - \frac{11}{23} a^{13} - \frac{11}{23} a^{12} + \frac{6}{23} a^{11} + \frac{5}{23} a^{10} - \frac{11}{23} a^{9} + \frac{7}{23} a^{8} + \frac{8}{23} a^{7} + \frac{3}{23} a^{6} + \frac{7}{23} a^{5} - \frac{8}{23} a^{4} + \frac{11}{23} a^{3} + \frac{9}{23} a^{2} - \frac{4}{23} a$, $\frac{1}{23} a^{19} - \frac{11}{23} a^{15} - \frac{2}{23} a^{14} + \frac{3}{23} a^{13} + \frac{4}{23} a^{12} - \frac{7}{23} a^{11} + \frac{8}{23} a^{10} - \frac{10}{23} a^{9} - \frac{7}{23} a^{8} + \frac{7}{23} a^{7} + \frac{2}{23} a^{6} - \frac{9}{23} a^{5} + \frac{1}{23} a^{3} - \frac{11}{23} a^{2} + \frac{8}{23} a$, $\frac{1}{23} a^{20} - \frac{7}{23} a^{15} + \frac{11}{23} a^{14} - \frac{4}{23} a^{13} + \frac{4}{23} a^{12} + \frac{5}{23} a^{11} - \frac{11}{23} a^{10} + \frac{6}{23} a^{9} + \frac{9}{23} a^{8} + \frac{3}{23} a^{7} + \frac{7}{23} a^{6} - \frac{6}{23} a^{5} + \frac{4}{23} a^{4} + \frac{10}{23} a^{3} - \frac{11}{23} a^{2} + \frac{2}{23} a$, $\frac{1}{23} a^{21} - \frac{11}{23} a^{15} - \frac{1}{23} a^{14} + \frac{1}{23} a^{13} - \frac{11}{23} a^{12} + \frac{8}{23} a^{11} - \frac{3}{23} a^{10} + \frac{11}{23} a^{9} - \frac{2}{23} a^{8} - \frac{7}{23} a^{7} - \frac{4}{23} a^{5} - \frac{9}{23} a^{4} - \frac{6}{23} a^{3} - \frac{8}{23} a^{2} - \frac{5}{23} a$, $\frac{1}{529} a^{22} + \frac{8}{529} a^{21} + \frac{11}{529} a^{20} - \frac{1}{529} a^{19} - \frac{9}{529} a^{18} + \frac{3}{529} a^{17} - \frac{4}{529} a^{16} - \frac{83}{529} a^{15} + \frac{60}{529} a^{14} - \frac{178}{529} a^{13} + \frac{31}{529} a^{12} + \frac{259}{529} a^{11} + \frac{126}{529} a^{10} + \frac{42}{529} a^{9} + \frac{175}{529} a^{8} + \frac{101}{529} a^{7} + \frac{218}{529} a^{6} + \frac{235}{529} a^{5} + \frac{27}{529} a^{4} + \frac{68}{529} a^{3} - \frac{134}{529} a^{2} + \frac{79}{529} a + \frac{7}{23}$, $\frac{1}{127489} a^{23} - \frac{35}{127489} a^{22} - \frac{1}{529} a^{21} - \frac{2406}{127489} a^{20} - \frac{449}{127489} a^{19} - \frac{1864}{127489} a^{18} - \frac{1352}{127489} a^{17} - \frac{2602}{127489} a^{16} - \frac{62703}{127489} a^{15} + \frac{2509}{127489} a^{14} - \frac{44203}{127489} a^{13} + \frac{52792}{127489} a^{12} - \frac{33712}{127489} a^{11} + \frac{33701}{127489} a^{10} - \frac{5679}{127489} a^{9} + \frac{49777}{127489} a^{8} + \frac{13953}{127489} a^{7} + \frac{8088}{127489} a^{6} - \frac{8537}{127489} a^{5} + \frac{23747}{127489} a^{4} + \frac{59847}{127489} a^{3} - \frac{36985}{127489} a^{2} + \frac{10909}{127489} a - \frac{968}{5543}$, $\frac{1}{24605377} a^{24} - \frac{76}{24605377} a^{23} + \frac{2399}{24605377} a^{22} + \frac{277636}{24605377} a^{21} - \frac{237757}{24605377} a^{20} - \frac{45633}{24605377} a^{19} + \frac{385721}{24605377} a^{18} + \frac{95246}{24605377} a^{17} - \frac{249077}{24605377} a^{16} + \frac{2739381}{24605377} a^{15} - \frac{5019128}{24605377} a^{14} + \frac{6528465}{24605377} a^{13} - \frac{6312536}{24605377} a^{12} - \frac{2745213}{24605377} a^{11} - \frac{6556870}{24605377} a^{10} + \frac{1707890}{24605377} a^{9} - \frac{3235037}{24605377} a^{8} + \frac{7994166}{24605377} a^{7} + \frac{3342576}{24605377} a^{6} + \frac{8655488}{24605377} a^{5} + \frac{202926}{1069799} a^{4} + \frac{645421}{24605377} a^{3} - \frac{7436460}{24605377} a^{2} + \frac{8372516}{24605377} a - \frac{1764}{1069799}$, $\frac{1}{565923671} a^{25} - \frac{2}{565923671} a^{24} + \frac{56}{565923671} a^{23} + \frac{200788}{565923671} a^{22} - \frac{5135304}{565923671} a^{21} + \frac{8234701}{565923671} a^{20} - \frac{7534148}{565923671} a^{19} - \frac{2966308}{565923671} a^{18} + \frac{6223794}{565923671} a^{17} - \frac{6554539}{565923671} a^{16} - \frac{180457168}{565923671} a^{15} - \frac{126462141}{565923671} a^{14} + \frac{45290264}{565923671} a^{13} + \frac{282052421}{565923671} a^{12} + \frac{12628350}{565923671} a^{11} + \frac{101598117}{565923671} a^{10} - \frac{152747379}{565923671} a^{9} + \frac{2350561}{24605377} a^{8} - \frac{39887563}{565923671} a^{7} + \frac{129096453}{565923671} a^{6} + \frac{196034811}{565923671} a^{5} + \frac{149512680}{565923671} a^{4} - \frac{57372485}{565923671} a^{3} - \frac{197399101}{565923671} a^{2} + \frac{204607071}{565923671} a + \frac{1065678}{24605377}$, $\frac{1}{231027134385234752888387468904622548076991262713326243444053026166730477135924536628910532259481329332255300926019518953630785769505329655786119545370786987254223} a^{26} + \frac{769525849901358967463310430310559060244552567105120466305052385019272107210126086332574766383258182357845782326214801123879837020441907961315943695997}{1197031784379454678178173414013588332005136076234851002300792881692904026611007961807826592018037975814794305316163310640574019531115697698373676400884906669711} a^{25} + \frac{4443789701772786297093765554889128899362075489519737318105191202514652851716248209533026287831640459580712543967795120718860361887651138847464829420625218}{231027134385234752888387468904622548076991262713326243444053026166730477135924536628910532259481329332255300926019518953630785769505329655786119545370786987254223} a^{24} - \frac{902767793050329745802871049296723159144731688760069933466278986661632196298269300981602657662752375040171547503928485401227800281739932487038346256747025527}{231027134385234752888387468904622548076991262713326243444053026166730477135924536628910532259481329332255300926019518953630785769505329655786119545370786987254223} a^{23} - \frac{21285292539731280005854193798137814941474535091927033216569447577261369395630877817252356018969001715125691048805100256634617246756523458384605729569725836116}{231027134385234752888387468904622548076991262713326243444053026166730477135924536628910532259481329332255300926019518953630785769505329655786119545370786987254223} a^{22} + \frac{2645151478293547191466628037029915194540141428727405616775699151501306384513161619633710679089757058027838844965116132282660629580225995301290985298957362531691}{231027134385234752888387468904622548076991262713326243444053026166730477135924536628910532259481329332255300926019518953630785769505329655786119545370786987254223} a^{21} + \frac{3823216256362034530020457508113424159683973690407057503682889920170385219466268265930852075263641917379411414908983387237746898079219234694438358139137294635536}{231027134385234752888387468904622548076991262713326243444053026166730477135924536628910532259481329332255300926019518953630785769505329655786119545370786987254223} a^{20} + \frac{4036923017411784934466552486464456369784264991043799759328481494406899855945376766140398249811168483799856604213437396323586356042597902911254296583803238235984}{231027134385234752888387468904622548076991262713326243444053026166730477135924536628910532259481329332255300926019518953630785769505329655786119545370786987254223} a^{19} - \frac{565754469431884239907605089318751568945829090036178612730606455303769817585952372007283384453563366145646061869490414353891152456619417979486392027449007372053}{231027134385234752888387468904622548076991262713326243444053026166730477135924536628910532259481329332255300926019518953630785769505329655786119545370786987254223} a^{18} + \frac{2627238069624827007125033693884493891476865294480769954251542281925097531031333219734729319767119690302427477137586035749922885527047493377295026157107878468399}{231027134385234752888387468904622548076991262713326243444053026166730477135924536628910532259481329332255300926019518953630785769505329655786119545370786987254223} a^{17} - \frac{3457667782725997082562368908236246214003782312402804508860907611136384554977840827596494312300752057142078802772927625931887490423487272480811973961188708269429}{231027134385234752888387468904622548076991262713326243444053026166730477135924536628910532259481329332255300926019518953630785769505329655786119545370786987254223} a^{16} + \frac{1765967232847766783826413553727450280340258540672310345810089504614348425091840047554916411876389095202587617504885125556738245681795383212519473251210681767153}{231027134385234752888387468904622548076991262713326243444053026166730477135924536628910532259481329332255300926019518953630785769505329655786119545370786987254223} a^{15} - \frac{108516598254054723487799710008442241269573598182234519526736354201974432517951470408443825148619934337619303913313026987078014803347990325293022887191507200995490}{231027134385234752888387468904622548076991262713326243444053026166730477135924536628910532259481329332255300926019518953630785769505329655786119545370786987254223} a^{14} + \frac{96905049349016213478555320614676649043498414687693583831674936054443726862923010318602169825023007985018224446606298541647634284714268647610228436924366495316698}{231027134385234752888387468904622548076991262713326243444053026166730477135924536628910532259481329332255300926019518953630785769505329655786119545370786987254223} a^{13} + \frac{1761478654384154123020904002270178300239194299804626797407399351802717387003537207827449588707111089365438204843742076566029326321950683981479455516486240886887}{10044658016749337082103802995853154264217011422318532323654479398553499005909762462126544880847014318793708735913892128418729816065449115468961719363947260315401} a^{12} - \frac{6591834321707304450031921927783830818492995168093410040330153816403529282035288011901133307811074985549969068415485527028667534853123600962111454042086108269524}{231027134385234752888387468904622548076991262713326243444053026166730477135924536628910532259481329332255300926019518953630785769505329655786119545370786987254223} a^{11} + \frac{26296063923911446296636329137586542583084887135172757619789310776322747737368313512640703885791483113800873718465295785377245904105568141711179216753768778204583}{231027134385234752888387468904622548076991262713326243444053026166730477135924536628910532259481329332255300926019518953630785769505329655786119545370786987254223} a^{10} + \frac{99021080267637130344776696855463551428776839764624334309423241726592422840439837452972079683468881241807767761013210642167461327407125419548907782539529050453562}{231027134385234752888387468904622548076991262713326243444053026166730477135924536628910532259481329332255300926019518953630785769505329655786119545370786987254223} a^{9} - \frac{103668376348682093471783550660637756709864987339888488233802884832894562787883688610777122901349617591942753936688859060889694929402608916786367125700706048255739}{231027134385234752888387468904622548076991262713326243444053026166730477135924536628910532259481329332255300926019518953630785769505329655786119545370786987254223} a^{8} - \frac{26951419051929993287153447369699530620960230981614712667320687832400009751054408453249957114409386180614662619375674245058062104827613134034125138341120325905105}{231027134385234752888387468904622548076991262713326243444053026166730477135924536628910532259481329332255300926019518953630785769505329655786119545370786987254223} a^{7} - \frac{84331339307558846902236641360942171467702154222057469416783739804626796773748778958887008420023749507930907512691960971767941314242214862081016835318030992874817}{231027134385234752888387468904622548076991262713326243444053026166730477135924536628910532259481329332255300926019518953630785769505329655786119545370786987254223} a^{6} - \frac{88895370979901198510222306981602714254886581786398493920154647435628044685244060638868366951241456023549517012358948123257330049133723839682124057789364822744856}{231027134385234752888387468904622548076991262713326243444053026166730477135924536628910532259481329332255300926019518953630785769505329655786119545370786987254223} a^{5} - \frac{59536609739050253138543827916060167071558225043270774745936427964870998890405756799744491562682160946130036385564690479841939315418033517677521210467312651291919}{231027134385234752888387468904622548076991262713326243444053026166730477135924536628910532259481329332255300926019518953630785769505329655786119545370786987254223} a^{4} - \frac{62086836117036123068101255116516332496111691743665563784222643189786199505734771232400018279708163244098480775721720212277859560651858638064194798809691699592507}{231027134385234752888387468904622548076991262713326243444053026166730477135924536628910532259481329332255300926019518953630785769505329655786119545370786987254223} a^{3} - \frac{85802468678505233765978615970672735526788555695403223638363683043577606982121666867138136673417873921042843837079732897453895824716608194547127904541693887750573}{231027134385234752888387468904622548076991262713326243444053026166730477135924536628910532259481329332255300926019518953630785769505329655786119545370786987254223} a^{2} + \frac{20858165262405512935206521937298004838513635091713211840679221917698978406107753057709785115146058980677725305082981238963133480306896750862703275081142261886546}{231027134385234752888387468904622548076991262713326243444053026166730477135924536628910532259481329332255300926019518953630785769505329655786119545370786987254223} a + \frac{4052713278724291125497525258532972062140945150996728305141718300808833779730916288245594182687402309417274215106674551840171252635213588697938702461679328398407}{10044658016749337082103802995853154264217011422318532323654479398553499005909762462126544880847014318793708735913892128418729816065449115468961719363947260315401}$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12819995733502660000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 27 |
| The 27 conjugacy class representatives for $C_{27}$ |
| Character table for $C_{27}$ is not computed |
Intermediate fields
| 3.3.26569.1, 9.9.498311414318121121.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $27$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{3}$ | $27$ | $27$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{3}$ | $27$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{27}$ | $27$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{3}$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 163 | Data not computed | ||||||