Properties

Label 27.27.4873283973...8969.1
Degree $27$
Signature $[27, 0]$
Discriminant $13^{18}\cdot 37^{24}$
Root discriminant $136.96$
Ramified primes $13, 37$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_3\times C_9$ (as 27T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![70153, -488126, -3332540, 2604404, 26431312, -4261315, -92239753, 2045189, 171925849, -486454, -185148056, 3352006, 120468998, -5298545, -48977088, 3524558, 12673590, -1244428, -2090049, 252089, 215668, -29833, -13298, 2014, 442, -71, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^27 - 6*x^26 - 71*x^25 + 442*x^24 + 2014*x^23 - 13298*x^22 - 29833*x^21 + 215668*x^20 + 252089*x^19 - 2090049*x^18 - 1244428*x^17 + 12673590*x^16 + 3524558*x^15 - 48977088*x^14 - 5298545*x^13 + 120468998*x^12 + 3352006*x^11 - 185148056*x^10 - 486454*x^9 + 171925849*x^8 + 2045189*x^7 - 92239753*x^6 - 4261315*x^5 + 26431312*x^4 + 2604404*x^3 - 3332540*x^2 - 488126*x + 70153)
 
gp: K = bnfinit(x^27 - 6*x^26 - 71*x^25 + 442*x^24 + 2014*x^23 - 13298*x^22 - 29833*x^21 + 215668*x^20 + 252089*x^19 - 2090049*x^18 - 1244428*x^17 + 12673590*x^16 + 3524558*x^15 - 48977088*x^14 - 5298545*x^13 + 120468998*x^12 + 3352006*x^11 - 185148056*x^10 - 486454*x^9 + 171925849*x^8 + 2045189*x^7 - 92239753*x^6 - 4261315*x^5 + 26431312*x^4 + 2604404*x^3 - 3332540*x^2 - 488126*x + 70153, 1)
 

Normalized defining polynomial

\( x^{27} - 6 x^{26} - 71 x^{25} + 442 x^{24} + 2014 x^{23} - 13298 x^{22} - 29833 x^{21} + 215668 x^{20} + 252089 x^{19} - 2090049 x^{18} - 1244428 x^{17} + 12673590 x^{16} + 3524558 x^{15} - 48977088 x^{14} - 5298545 x^{13} + 120468998 x^{12} + 3352006 x^{11} - 185148056 x^{10} - 486454 x^{9} + 171925849 x^{8} + 2045189 x^{7} - 92239753 x^{6} - 4261315 x^{5} + 26431312 x^{4} + 2604404 x^{3} - 3332540 x^{2} - 488126 x + 70153 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $27$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[27, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(4873283973806953022959748626642827335637181614041911288969=13^{18}\cdot 37^{24}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $136.96$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $13, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(481=13\cdot 37\)
Dirichlet character group:    $\lbrace$$\chi_{481}(256,·)$, $\chi_{481}(1,·)$, $\chi_{481}(386,·)$, $\chi_{481}(451,·)$, $\chi_{481}(456,·)$, $\chi_{481}(9,·)$, $\chi_{481}(269,·)$, $\chi_{481}(334,·)$, $\chi_{481}(16,·)$, $\chi_{481}(81,·)$, $\chi_{481}(248,·)$, $\chi_{481}(211,·)$, $\chi_{481}(404,·)$, $\chi_{481}(367,·)$, $\chi_{481}(157,·)$, $\chi_{481}(417,·)$, $\chi_{481}(419,·)$, $\chi_{481}(100,·)$, $\chi_{481}(144,·)$, $\chi_{481}(107,·)$, $\chi_{481}(477,·)$, $\chi_{481}(308,·)$, $\chi_{481}(53,·)$, $\chi_{481}(118,·)$, $\chi_{481}(120,·)$, $\chi_{481}(380,·)$, $\chi_{481}(445,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{31} a^{18} - \frac{14}{31} a^{17} + \frac{1}{31} a^{16} - \frac{3}{31} a^{15} - \frac{8}{31} a^{14} + \frac{7}{31} a^{13} + \frac{12}{31} a^{12} + \frac{13}{31} a^{10} - \frac{4}{31} a^{9} + \frac{7}{31} a^{8} + \frac{11}{31} a^{7} - \frac{14}{31} a^{6} - \frac{12}{31} a^{5} + \frac{1}{31} a^{4} - \frac{5}{31} a^{3} + \frac{14}{31} a^{2} - \frac{15}{31} a$, $\frac{1}{31} a^{19} - \frac{9}{31} a^{17} + \frac{11}{31} a^{16} + \frac{12}{31} a^{15} - \frac{12}{31} a^{14} - \frac{14}{31} a^{13} + \frac{13}{31} a^{12} + \frac{13}{31} a^{11} - \frac{8}{31} a^{10} + \frac{13}{31} a^{9} - \frac{15}{31} a^{8} - \frac{15}{31} a^{7} + \frac{9}{31} a^{6} - \frac{12}{31} a^{5} + \frac{9}{31} a^{4} + \frac{6}{31} a^{3} - \frac{5}{31} a^{2} + \frac{7}{31} a$, $\frac{1}{31} a^{20} + \frac{9}{31} a^{17} - \frac{10}{31} a^{16} - \frac{8}{31} a^{15} + \frac{7}{31} a^{14} + \frac{14}{31} a^{13} - \frac{3}{31} a^{12} - \frac{8}{31} a^{11} + \frac{6}{31} a^{10} + \frac{11}{31} a^{9} - \frac{14}{31} a^{8} + \frac{15}{31} a^{7} - \frac{14}{31} a^{6} - \frac{6}{31} a^{5} + \frac{15}{31} a^{4} + \frac{12}{31} a^{3} + \frac{9}{31} a^{2} - \frac{11}{31} a$, $\frac{1}{31} a^{21} - \frac{8}{31} a^{17} + \frac{14}{31} a^{16} + \frac{3}{31} a^{15} - \frac{7}{31} a^{14} - \frac{4}{31} a^{13} + \frac{8}{31} a^{12} + \frac{6}{31} a^{11} - \frac{13}{31} a^{10} - \frac{9}{31} a^{9} + \frac{14}{31} a^{8} + \frac{11}{31} a^{7} - \frac{4}{31} a^{6} - \frac{1}{31} a^{5} + \frac{3}{31} a^{4} - \frac{8}{31} a^{3} - \frac{13}{31} a^{2} + \frac{11}{31} a$, $\frac{1}{31} a^{22} - \frac{5}{31} a^{17} + \frac{11}{31} a^{16} - \frac{6}{31} a^{14} + \frac{2}{31} a^{13} + \frac{9}{31} a^{12} - \frac{13}{31} a^{11} + \frac{2}{31} a^{10} + \frac{13}{31} a^{9} + \frac{5}{31} a^{8} - \frac{9}{31} a^{7} + \frac{11}{31} a^{6} + \frac{9}{31} a^{3} - \frac{1}{31} a^{2} + \frac{4}{31} a$, $\frac{1}{2263} a^{23} - \frac{1}{2263} a^{22} - \frac{1}{2263} a^{21} - \frac{7}{2263} a^{20} - \frac{17}{2263} a^{19} - \frac{7}{2263} a^{18} + \frac{886}{2263} a^{17} + \frac{538}{2263} a^{16} + \frac{1027}{2263} a^{15} + \frac{29}{73} a^{14} + \frac{261}{2263} a^{13} - \frac{68}{2263} a^{12} + \frac{14}{31} a^{11} - \frac{342}{2263} a^{10} + \frac{362}{2263} a^{9} - \frac{743}{2263} a^{8} - \frac{390}{2263} a^{7} + \frac{865}{2263} a^{6} + \frac{922}{2263} a^{5} - \frac{99}{2263} a^{4} - \frac{612}{2263} a^{3} + \frac{632}{2263} a^{2} + \frac{128}{2263} a$, $\frac{1}{97309} a^{24} - \frac{1}{97309} a^{23} + \frac{1167}{97309} a^{22} - \frac{80}{97309} a^{21} - \frac{90}{97309} a^{20} - \frac{80}{97309} a^{19} + \frac{1105}{97309} a^{18} - \frac{39466}{97309} a^{17} + \frac{44681}{97309} a^{16} + \frac{22361}{97309} a^{15} + \frac{8218}{97309} a^{14} - \frac{9485}{97309} a^{13} + \frac{145}{1333} a^{12} + \frac{31194}{97309} a^{11} + \frac{40585}{97309} a^{10} + \frac{21522}{97309} a^{9} - \frac{48497}{97309} a^{8} + \frac{19115}{97309} a^{7} - \frac{15795}{97309} a^{6} - \frac{46600}{97309} a^{5} + \frac{47422}{97309} a^{4} - \frac{20100}{97309} a^{3} + \frac{29839}{97309} a^{2} - \frac{174}{1333} a + \frac{4}{43}$, $\frac{1}{43107887} a^{25} + \frac{11}{43107887} a^{24} + \frac{4810}{43107887} a^{23} + \frac{594123}{43107887} a^{22} + \frac{541481}{43107887} a^{21} + \frac{240070}{43107887} a^{20} + \frac{35319}{43107887} a^{19} - \frac{503807}{43107887} a^{18} - \frac{4118354}{43107887} a^{17} + \frac{20480003}{43107887} a^{16} + \frac{20459761}{43107887} a^{15} + \frac{14279862}{43107887} a^{14} - \frac{8158210}{43107887} a^{13} + \frac{19462505}{43107887} a^{12} - \frac{17866623}{43107887} a^{11} + \frac{19605530}{43107887} a^{10} - \frac{8273359}{43107887} a^{9} - \frac{12165023}{43107887} a^{8} + \frac{2269286}{43107887} a^{7} + \frac{3041578}{43107887} a^{6} - \frac{7877248}{43107887} a^{5} - \frac{4257705}{43107887} a^{4} + \frac{12851265}{43107887} a^{3} - \frac{17032482}{43107887} a^{2} - \frac{19598765}{43107887} a - \frac{7563}{19049}$, $\frac{1}{15560111481162628312742141612974719254081955595935637719659773811} a^{26} - \frac{159880898860149690730683460159893504773401060183256290635}{15560111481162628312742141612974719254081955595935637719659773811} a^{25} + \frac{13119602753777496883485430753410193930443707957340118885268}{15560111481162628312742141612974719254081955595935637719659773811} a^{24} + \frac{381017496630026682402585155766589354062021494032643447996641}{15560111481162628312742141612974719254081955595935637719659773811} a^{23} + \frac{208778187191037938803843131614701372176387644147381283492914141}{15560111481162628312742141612974719254081955595935637719659773811} a^{22} - \frac{129534887488685653323821316752720600858865779422905326976676686}{15560111481162628312742141612974719254081955595935637719659773811} a^{21} - \frac{208782439124192336276302329056532557080213171182433844478050224}{15560111481162628312742141612974719254081955595935637719659773811} a^{20} - \frac{87777054089231246335464927590757374487505417608189995877842059}{15560111481162628312742141612974719254081955595935637719659773811} a^{19} - \frac{25797415965838812527253049078248472933106215635629480830688484}{15560111481162628312742141612974719254081955595935637719659773811} a^{18} - \frac{419599349468425960091266522976576150460636296626111207504675188}{15560111481162628312742141612974719254081955595935637719659773811} a^{17} - \frac{2552460747253948217005819905818053109821100601341661179283810999}{15560111481162628312742141612974719254081955595935637719659773811} a^{16} + \frac{1991986497189392320706076783247314238291558810585849304834482402}{15560111481162628312742141612974719254081955595935637719659773811} a^{15} - \frac{2298727156825478386931012093778348203614289361318585044381039699}{15560111481162628312742141612974719254081955595935637719659773811} a^{14} + \frac{5154282919825455030660479343238775287440446815533085029569147442}{15560111481162628312742141612974719254081955595935637719659773811} a^{13} - \frac{7383937273788646238177322460044057171971944007636388859763283412}{15560111481162628312742141612974719254081955595935637719659773811} a^{12} - \frac{4695211418245950189687181256877634392681997887553386335295743036}{15560111481162628312742141612974719254081955595935637719659773811} a^{11} + \frac{5127048851949765139809383795842796612593234591206307737041081020}{15560111481162628312742141612974719254081955595935637719659773811} a^{10} + \frac{652104230204412377732232108370416444831640654115186697498590775}{15560111481162628312742141612974719254081955595935637719659773811} a^{9} - \frac{5303777872557193239563076489137264568235735062876766619906779617}{15560111481162628312742141612974719254081955595935637719659773811} a^{8} - \frac{7351243073544350030163245221835147535058843698267833169761427547}{15560111481162628312742141612974719254081955595935637719659773811} a^{7} + \frac{523068457537499906816844426189916613153597686951640510441166739}{15560111481162628312742141612974719254081955595935637719659773811} a^{6} + \frac{5256963898649261645922860533462132477411710224808977194303924703}{15560111481162628312742141612974719254081955595935637719659773811} a^{5} + \frac{6921523101473334840090198536805313662582222911997832392657455}{213152212070720935790988241273626291151807610903227913967942107} a^{4} - \frac{4881584437398854397438563017503822891588866690385287552238537680}{15560111481162628312742141612974719254081955595935637719659773811} a^{3} + \frac{5412349858734268785654774275020396768623739512326199398332543741}{15560111481162628312742141612974719254081955595935637719659773811} a^{2} + \frac{1859971267049786465646663645031162742837566300956377232796497548}{15560111481162628312742141612974719254081955595935637719659773811} a + \frac{3292424939490543484203914775308103653991096335395355468134870}{6875877808732933412612523912052461004897019706555739160256197}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $26$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 326889469217849300000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3\times C_9$ (as 27T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 27
The 27 conjugacy class representatives for $C_3\times C_9$
Character table for $C_3\times C_9$ is not computed

Intermediate fields

3.3.169.1, 3.3.1369.1, 3.3.231361.2, 3.3.231361.1, 9.9.12384271322498881.1, 9.9.16954067440500968089.2, 9.9.3512479453921.1, 9.9.16954067440500968089.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }^{3}$ ${\href{/LocalNumberField/3.9.0.1}{9} }^{3}$ ${\href{/LocalNumberField/5.9.0.1}{9} }^{3}$ ${\href{/LocalNumberField/7.9.0.1}{9} }^{3}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{9}$ R ${\href{/LocalNumberField/17.9.0.1}{9} }^{3}$ ${\href{/LocalNumberField/19.9.0.1}{9} }^{3}$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{9}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{9}$ ${\href{/LocalNumberField/31.1.0.1}{1} }^{27}$ R ${\href{/LocalNumberField/41.9.0.1}{9} }^{3}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{9}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{9}$ ${\href{/LocalNumberField/53.9.0.1}{9} }^{3}$ ${\href{/LocalNumberField/59.9.0.1}{9} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
13Data not computed
37Data not computed