Normalized defining polynomial
\( x^{27} - 3 x^{26} - 192 x^{25} + 755 x^{24} + 14055 x^{23} - 68025 x^{22} - 494100 x^{21} + 2946153 x^{20} + 8585901 x^{19} - 69113725 x^{18} - 58476672 x^{17} + 926380305 x^{16} - 263176183 x^{15} - 7219642587 x^{14} + 7122066258 x^{13} + 32268931643 x^{12} - 48846266253 x^{11} - 78264957723 x^{10} + 163446427076 x^{9} + 85583050641 x^{8} - 284780543145 x^{7} - 3315665497 x^{6} + 245913582318 x^{5} - 61199808147 x^{4} - 89489663845 x^{3} + 33768425463 x^{2} + 7536057522 x - 2784493637 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(46521581790658445094934566845164072323103073629781639266605395671761=3^{36}\cdot 127^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $320.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1143=3^{2}\cdot 127\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1143}(1,·)$, $\chi_{1143}(322,·)$, $\chi_{1143}(763,·)$, $\chi_{1143}(226,·)$, $\chi_{1143}(781,·)$, $\chi_{1143}(400,·)$, $\chi_{1143}(19,·)$, $\chi_{1143}(22,·)$, $\chi_{1143}(988,·)$, $\chi_{1143}(799,·)$, $\chi_{1143}(865,·)$, $\chi_{1143}(418,·)$, $\chi_{1143}(1123,·)$, $\chi_{1143}(484,·)$, $\chi_{1143}(37,·)$, $\chi_{1143}(742,·)$, $\chi_{1143}(103,·)$, $\chi_{1143}(361,·)$, $\chi_{1143}(814,·)$, $\chi_{1143}(433,·)$, $\chi_{1143}(403,·)$, $\chi_{1143}(52,·)$, $\chi_{1143}(382,·)$, $\chi_{1143}(607,·)$, $\chi_{1143}(1084,·)$, $\chi_{1143}(784,·)$, $\chi_{1143}(703,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{8} a^{12} - \frac{1}{4} a^{11} + \frac{1}{8} a^{10} - \frac{1}{4} a^{9} + \frac{1}{8} a^{8} - \frac{1}{4} a^{7} + \frac{1}{8} a^{6} - \frac{1}{2} a^{5} + \frac{3}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{8} a^{2} - \frac{1}{2} a - \frac{1}{8}$, $\frac{1}{8} a^{13} + \frac{1}{8} a^{11} + \frac{1}{8} a^{9} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} + \frac{3}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{8} a^{14} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a - \frac{3}{8}$, $\frac{1}{8} a^{15} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} + \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{8} a^{16} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{3}{8} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{17} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{4} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{16} a^{18} - \frac{1}{16} a^{17} - \frac{1}{16} a^{14} - \frac{1}{16} a^{13} - \frac{1}{16} a^{11} - \frac{1}{16} a^{9} - \frac{1}{16} a^{7} - \frac{1}{4} a^{6} + \frac{3}{16} a^{5} - \frac{5}{16} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{3}{16} a - \frac{3}{16}$, $\frac{1}{16} a^{19} - \frac{1}{16} a^{17} - \frac{1}{16} a^{15} - \frac{1}{16} a^{13} - \frac{1}{16} a^{12} + \frac{3}{16} a^{11} - \frac{1}{16} a^{10} + \frac{3}{16} a^{9} - \frac{1}{16} a^{8} + \frac{3}{16} a^{7} + \frac{3}{16} a^{6} + \frac{1}{8} a^{5} + \frac{7}{16} a^{4} + \frac{1}{4} a^{3} - \frac{1}{16} a^{2} - \frac{1}{4} a + \frac{7}{16}$, $\frac{1}{16} a^{20} - \frac{1}{16} a^{17} - \frac{1}{16} a^{16} - \frac{1}{16} a^{12} - \frac{1}{4} a^{11} - \frac{1}{16} a^{10} - \frac{1}{4} a^{9} - \frac{1}{16} a^{8} - \frac{1}{4} a^{7} + \frac{1}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{16} a^{4} - \frac{3}{16} a^{3} - \frac{1}{4} a - \frac{1}{16}$, $\frac{1}{128} a^{21} - \frac{1}{32} a^{20} + \frac{1}{128} a^{19} - \frac{3}{128} a^{18} - \frac{3}{64} a^{17} - \frac{1}{32} a^{16} - \frac{5}{128} a^{15} - \frac{3}{64} a^{14} + \frac{3}{64} a^{13} - \frac{3}{128} a^{12} - \frac{1}{64} a^{11} - \frac{15}{128} a^{10} - \frac{3}{64} a^{9} - \frac{3}{128} a^{8} + \frac{1}{128} a^{7} - \frac{23}{128} a^{6} - \frac{35}{128} a^{5} + \frac{3}{8} a^{4} - \frac{3}{16} a^{3} - \frac{51}{128} a^{2} + \frac{3}{128} a + \frac{23}{128}$, $\frac{1}{128} a^{22} + \frac{1}{128} a^{20} + \frac{1}{128} a^{19} - \frac{1}{64} a^{18} + \frac{1}{32} a^{17} - \frac{5}{128} a^{16} + \frac{3}{64} a^{15} - \frac{1}{64} a^{14} + \frac{5}{128} a^{13} + \frac{1}{64} a^{12} + \frac{25}{128} a^{11} + \frac{7}{64} a^{10} + \frac{21}{128} a^{9} + \frac{5}{128} a^{8} + \frac{29}{128} a^{7} + \frac{1}{128} a^{6} + \frac{5}{32} a^{5} - \frac{3}{16} a^{4} - \frac{3}{128} a^{3} - \frac{9}{128} a^{2} - \frac{13}{128} a + \frac{7}{32}$, $\frac{1}{128} a^{23} - \frac{3}{128} a^{20} - \frac{3}{128} a^{19} - \frac{1}{128} a^{18} + \frac{1}{128} a^{17} + \frac{1}{64} a^{16} + \frac{3}{128} a^{15} + \frac{3}{128} a^{14} + \frac{1}{32} a^{13} + \frac{1}{32} a^{12} + \frac{3}{16} a^{11} - \frac{5}{32} a^{10} + \frac{19}{128} a^{9} - \frac{3}{16} a^{8} - \frac{3}{16} a^{7} - \frac{5}{128} a^{6} + \frac{51}{128} a^{5} + \frac{29}{128} a^{4} + \frac{23}{128} a^{3} - \frac{5}{64} a^{2} + \frac{33}{128} a + \frac{25}{128}$, $\frac{1}{33536} a^{24} - \frac{15}{16768} a^{23} + \frac{29}{8384} a^{22} - \frac{35}{16768} a^{21} - \frac{297}{33536} a^{20} + \frac{357}{16768} a^{19} + \frac{31}{2096} a^{18} + \frac{307}{16768} a^{17} - \frac{97}{33536} a^{16} - \frac{11}{262} a^{15} - \frac{475}{8384} a^{14} - \frac{289}{16768} a^{13} - \frac{1839}{33536} a^{12} - \frac{2773}{16768} a^{11} + \frac{501}{2096} a^{10} - \frac{1255}{8384} a^{9} + \frac{1157}{33536} a^{8} - \frac{1037}{8384} a^{7} - \frac{2527}{16768} a^{6} - \frac{201}{8384} a^{5} - \frac{1103}{33536} a^{4} + \frac{879}{2096} a^{3} - \frac{5839}{16768} a^{2} + \frac{5183}{16768} a + \frac{1949}{33536}$, $\frac{1}{167680} a^{25} + \frac{1}{83840} a^{23} + \frac{133}{83840} a^{22} - \frac{39}{167680} a^{21} + \frac{1011}{83840} a^{20} + \frac{205}{8384} a^{19} + \frac{673}{83840} a^{18} - \frac{9711}{167680} a^{17} - \frac{4517}{83840} a^{16} - \frac{817}{41920} a^{15} - \frac{5}{4192} a^{14} - \frac{587}{33536} a^{13} + \frac{3309}{83840} a^{12} - \frac{433}{10480} a^{11} + \frac{4153}{83840} a^{10} + \frac{34743}{167680} a^{9} + \frac{823}{4192} a^{8} - \frac{3709}{20960} a^{7} - \frac{521}{8384} a^{6} - \frac{17363}{167680} a^{5} + \frac{5973}{20960} a^{4} - \frac{7899}{20960} a^{3} + \frac{4807}{41920} a^{2} - \frac{36579}{167680} a + \frac{33689}{83840}$, $\frac{1}{30236434889966550904949990030319242219135555472135599675724574622402181481373225234043429446371321275063923590400} a^{26} - \frac{117225026987964245369447893228063216245587790940888202023091623377276044668963008806045266224814983541971}{472444295155727357889843594223738159673993054252118744933196478475034085646456644281928585099551894922873806100} a^{25} - \frac{277193836576080975660545530668131323618292993919528629468898982881826380435000215528379839920874361681133313}{30236434889966550904949990030319242219135555472135599675724574622402181481373225234043429446371321275063923590400} a^{24} + \frac{31346831176844952314662518632526103963946840552283959685743426855646892840579217166032175001187028382821161219}{15118217444983275452474995015159621109567777736067799837862287311201090740686612617021714723185660637531961795200} a^{23} + \frac{77051046794136608973408221097801314213847082024170267987230317131487100252409136473882918058027519680134299697}{30236434889966550904949990030319242219135555472135599675724574622402181481373225234043429446371321275063923590400} a^{22} + \frac{130566619130571953045156937136391167162632107649885509449696763451922794025368113372443117654843383087502481}{3779554361245818863118748753789905277391944434016949959465571827800272685171653154255428680796415159382990448800} a^{21} + \frac{120072213360497657012568038382971000672096754662401701812410096990070624563737763902207416231932986256576886557}{30236434889966550904949990030319242219135555472135599675724574622402181481373225234043429446371321275063923590400} a^{20} - \frac{456775255113273991836962469075361412704652466311589844156998777983822998078851465518466767151838605320876573}{39889755791512600138456451227334092637381999303608970548449306889712640476745679728289484757745806431482748800} a^{19} - \frac{66779589631764470764251351281238035377524098202018683195572359258739309688085030789038201263613175037469883461}{6047286977993310180989998006063848443827111094427119935144914924480436296274645046808685889274264255012784718080} a^{18} + \frac{12599172631708408257464647556488563414453630823413692703916929538838688405481793028080121719297707962363140503}{3023643488996655090494999003031924221913555547213559967572457462240218148137322523404342944637132127506392359040} a^{17} + \frac{157059166397128800485087408626877582864353843319144862285518559890211506470051281058606317105597921811331676623}{30236434889966550904949990030319242219135555472135599675724574622402181481373225234043429446371321275063923590400} a^{16} - \frac{711533819162894258502814474559738205195954471535892711864387802352197539076902302268593755986152204143791980669}{15118217444983275452474995015159621109567777736067799837862287311201090740686612617021714723185660637531961795200} a^{15} + \frac{20912075527131794703288554543959791370390296371485180194530276744937108780729569976647041116703286575492375875}{1209457395598662036197999601212769688765422218885423987028982984896087259254929009361737177854852851002556943616} a^{14} - \frac{436405580838732436026117191147524908688140515771714628949599334083738907232930082088121254600082187488187906653}{7559108722491637726237497507579810554783888868033899918931143655600545370343306308510857361592830318765980897600} a^{13} + \frac{34913624910343819953953063927947256654951737227027198589711904337380349098204490116193509085510870454703270293}{1209457395598662036197999601212769688765422218885423987028982984896087259254929009361737177854852851002556943616} a^{12} + \frac{649111370056572702941401471244167482658276069964299035960080257954946251710926636782570099131998073380673473317}{7559108722491637726237497507579810554783888868033899918931143655600545370343306308510857361592830318765980897600} a^{11} + \frac{4544497831690699763370088723792664480759393807024261190641318776412679984817743519516121099931905286192884897559}{30236434889966550904949990030319242219135555472135599675724574622402181481373225234043429446371321275063923590400} a^{10} + \frac{850054451037867075593582592654822856834130318818349054480099101003677730680626036878529324147155086465870860779}{15118217444983275452474995015159621109567777736067799837862287311201090740686612617021714723185660637531961795200} a^{9} - \frac{650658408469574908211007012381570585579376440497224860379389477272995904532003350572838117736327966358234927427}{30236434889966550904949990030319242219135555472135599675724574622402181481373225234043429446371321275063923590400} a^{8} + \frac{1764312129573330052114355787308509022562536076013815785598294200958006121920158522426383059608148877559754849787}{7559108722491637726237497507579810554783888868033899918931143655600545370343306308510857361592830318765980897600} a^{7} + \frac{3212653070765424808532662920896558334802456138976661349262746075079060505536813126316221146177671576186685115137}{30236434889966550904949990030319242219135555472135599675724574622402181481373225234043429446371321275063923590400} a^{6} - \frac{3776733843262432306020964874282945029161666441076392438392436790776460140376512503457849589160356191465794790707}{15118217444983275452474995015159621109567777736067799837862287311201090740686612617021714723185660637531961795200} a^{5} - \frac{9117975471763121502860617154475960527683217315694142618652775288032090853120275288323814642841327896460754474433}{30236434889966550904949990030319242219135555472135599675724574622402181481373225234043429446371321275063923590400} a^{4} + \frac{1124003162992911228617853173692689367965794993672231938873125526947092632554080382383764145543192690462910526903}{15118217444983275452474995015159621109567777736067799837862287311201090740686612617021714723185660637531961795200} a^{3} - \frac{1404250855680790307793040060593201808204488587117008895586079710699965461745652273081639733978081028035407707841}{30236434889966550904949990030319242219135555472135599675724574622402181481373225234043429446371321275063923590400} a^{2} + \frac{2597095416318278274706219890366009266035284659862285927059381825016706347490137235440233979186726120960983275347}{15118217444983275452474995015159621109567777736067799837862287311201090740686612617021714723185660637531961795200} a - \frac{2884930969721074238952497112594614065996430093076835268673481925573217527996726053442575484923400238188740999157}{30236434889966550904949990030319242219135555472135599675724574622402181481373225234043429446371321275063923590400}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9878199703760603000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_9$ (as 27T2):
| An abelian group of order 27 |
| The 27 conjugacy class representatives for $C_3\times C_9$ |
| Character table for $C_3\times C_9$ is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 3.3.16129.1, 3.3.1306449.2, 3.3.1306449.1, 9.9.2229858897655236849.1, 9.9.67675234241018881.1, 9.9.35965394160281315137521.4, 9.9.35965394160281315137521.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{9}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $127$ | 127.9.8.1 | $x^{9} - 127$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
| 127.9.8.1 | $x^{9} - 127$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |
| 127.9.8.1 | $x^{9} - 127$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |