Normalized defining polynomial
\( x^{27} - 6 x^{26} - 89 x^{25} + 608 x^{24} + 2854 x^{23} - 24256 x^{22} - 37459 x^{21} + 502442 x^{20} + 38939 x^{19} - 5964855 x^{18} + 4517402 x^{17} + 42143562 x^{16} - 55948534 x^{15} - 176060310 x^{14} + 322170703 x^{13} + 406625862 x^{12} - 1018443104 x^{11} - 403762596 x^{10} + 1780570826 x^{9} - 109881561 x^{8} - 1631686473 x^{7} + 506463311 x^{6} + 712423287 x^{5} - 307934112 x^{4} - 139835954 x^{3} + 69450354 x^{2} + 9973258 x - 5332589 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4512385497467278486124161046693886108531644910659813162128201=19^{18}\cdot 37^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $176.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(703=19\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{703}(1,·)$, $\chi_{703}(514,·)$, $\chi_{703}(581,·)$, $\chi_{703}(7,·)$, $\chi_{703}(201,·)$, $\chi_{703}(330,·)$, $\chi_{703}(334,·)$, $\chi_{703}(144,·)$, $\chi_{703}(83,·)$, $\chi_{703}(343,·)$, $\chi_{703}(292,·)$, $\chi_{703}(26,·)$, $\chi_{703}(349,·)$, $\chi_{703}(197,·)$, $\chi_{703}(482,·)$, $\chi_{703}(419,·)$, $\chi_{703}(676,·)$, $\chi_{703}(229,·)$, $\chi_{703}(305,·)$, $\chi_{703}(552,·)$, $\chi_{703}(49,·)$, $\chi_{703}(562,·)$, $\chi_{703}(182,·)$, $\chi_{703}(248,·)$, $\chi_{703}(121,·)$, $\chi_{703}(571,·)$, $\chi_{703}(638,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{31} a^{21} + \frac{15}{31} a^{20} + \frac{8}{31} a^{19} - \frac{13}{31} a^{18} - \frac{7}{31} a^{17} - \frac{5}{31} a^{16} + \frac{12}{31} a^{15} + \frac{3}{31} a^{14} - \frac{14}{31} a^{13} - \frac{10}{31} a^{12} - \frac{3}{31} a^{11} + \frac{14}{31} a^{10} - \frac{7}{31} a^{9} - \frac{1}{31} a^{8} + \frac{14}{31} a^{7} - \frac{11}{31} a^{6} - \frac{10}{31} a^{5} - \frac{4}{31} a^{4} - \frac{3}{31} a^{3} + \frac{3}{31} a^{2} - \frac{13}{31} a$, $\frac{1}{31} a^{22} - \frac{9}{31} a^{19} + \frac{2}{31} a^{18} + \frac{7}{31} a^{17} - \frac{6}{31} a^{16} + \frac{9}{31} a^{15} + \frac{3}{31} a^{14} + \frac{14}{31} a^{13} - \frac{8}{31} a^{12} - \frac{3}{31} a^{11} + \frac{11}{31} a^{9} - \frac{2}{31} a^{8} - \frac{4}{31} a^{7} - \frac{9}{31} a^{5} - \frac{5}{31} a^{4} - \frac{14}{31} a^{3} + \frac{4}{31} a^{2} + \frac{9}{31} a$, $\frac{1}{31} a^{23} - \frac{9}{31} a^{20} + \frac{2}{31} a^{19} + \frac{7}{31} a^{18} - \frac{6}{31} a^{17} + \frac{9}{31} a^{16} + \frac{3}{31} a^{15} + \frac{14}{31} a^{14} - \frac{8}{31} a^{13} - \frac{3}{31} a^{12} + \frac{11}{31} a^{10} - \frac{2}{31} a^{9} - \frac{4}{31} a^{8} - \frac{9}{31} a^{6} - \frac{5}{31} a^{5} - \frac{14}{31} a^{4} + \frac{4}{31} a^{3} + \frac{9}{31} a^{2}$, $\frac{1}{1333} a^{24} - \frac{1}{1333} a^{23} - \frac{10}{1333} a^{22} - \frac{21}{1333} a^{21} - \frac{262}{1333} a^{20} - \frac{63}{1333} a^{19} + \frac{278}{1333} a^{18} + \frac{5}{31} a^{17} + \frac{424}{1333} a^{16} + \frac{366}{1333} a^{15} - \frac{615}{1333} a^{14} + \frac{188}{1333} a^{13} - \frac{107}{1333} a^{12} - \frac{574}{1333} a^{11} - \frac{646}{1333} a^{10} + \frac{375}{1333} a^{9} - \frac{646}{1333} a^{8} + \frac{49}{1333} a^{7} - \frac{484}{1333} a^{6} - \frac{481}{1333} a^{5} + \frac{364}{1333} a^{4} + \frac{553}{1333} a^{3} + \frac{597}{1333} a^{2} - \frac{213}{1333} a + \frac{5}{43}$, $\frac{1}{6797674823} a^{25} - \frac{896436}{6797674823} a^{24} + \frac{535450}{219279833} a^{23} - \frac{45120512}{6797674823} a^{22} + \frac{32844507}{6797674823} a^{21} - \frac{3038942404}{6797674823} a^{20} - \frac{2354100877}{6797674823} a^{19} - \frac{41734317}{6797674823} a^{18} + \frac{1982768307}{6797674823} a^{17} - \frac{1729535402}{6797674823} a^{16} + \frac{2340700551}{6797674823} a^{15} + \frac{1853508060}{6797674823} a^{14} - \frac{691271857}{6797674823} a^{13} + \frac{3189849800}{6797674823} a^{12} - \frac{2859041669}{6797674823} a^{11} - \frac{2556255656}{6797674823} a^{10} - \frac{581860568}{6797674823} a^{9} - \frac{2458219637}{6797674823} a^{8} + \frac{2996564641}{6797674823} a^{7} + \frac{3039316600}{6797674823} a^{6} + \frac{1008648165}{6797674823} a^{5} + \frac{2435193946}{6797674823} a^{4} + \frac{442329641}{6797674823} a^{3} + \frac{2585776348}{6797674823} a^{2} + \frac{87684174}{219279833} a - \frac{16977}{39517}$, $\frac{1}{3927367318191772731306026707324910415905888856877494548042136821262610123610702671} a^{26} - \frac{69734814305217910776529703506924855700698199776187494258966673000987438}{3927367318191772731306026707324910415905888856877494548042136821262610123610702671} a^{25} + \frac{1076934055935299421481524990612778883183037467237365293512051491575079466480934}{3927367318191772731306026707324910415905888856877494548042136821262610123610702671} a^{24} + \frac{56513410014182717917328242476103188417586566265468323625993784087069534082376837}{3927367318191772731306026707324910415905888856877494548042136821262610123610702671} a^{23} + \frac{13001174999275539981014197292036722550123571882402863524368533868347917435660223}{3927367318191772731306026707324910415905888856877494548042136821262610123610702671} a^{22} - \frac{59541715357644111579148888571925357188965005203765590904115430921299771433862611}{3927367318191772731306026707324910415905888856877494548042136821262610123610702671} a^{21} + \frac{954564973443688525263889605151522818203951028533515462848393008739473949355430086}{3927367318191772731306026707324910415905888856877494548042136821262610123610702671} a^{20} + \frac{508081220365123742524586700003182795299044007159152122649658593298014709459111458}{3927367318191772731306026707324910415905888856877494548042136821262610123610702671} a^{19} + \frac{189925819366690574876744256407204327495526801810470893168218666176760736802423096}{3927367318191772731306026707324910415905888856877494548042136821262610123610702671} a^{18} + \frac{1591558932612355324917388760713441517889594130606180679595589433198736768116127354}{3927367318191772731306026707324910415905888856877494548042136821262610123610702671} a^{17} + \frac{445369073323612815252784187396576128259524246779048096778452366314890817500986161}{3927367318191772731306026707324910415905888856877494548042136821262610123610702671} a^{16} + \frac{1071204945141226783814572707281390630614074209688921605875329004318855222351042224}{3927367318191772731306026707324910415905888856877494548042136821262610123610702671} a^{15} + \frac{9462202605157783912400873043219152391094890077819248286048682447421973618741556}{126689268328766862300194409913706787609867382479919178969101187782664842697119441} a^{14} + \frac{1165099482714316879300216957574950702763680065138809632589746906480034823943451172}{3927367318191772731306026707324910415905888856877494548042136821262610123610702671} a^{13} - \frac{659122862033814372611399934898243556515773322547462627363455900824538443474343274}{3927367318191772731306026707324910415905888856877494548042136821262610123610702671} a^{12} - \frac{310471621167967809620860269870883702830059146112352166372715957489860408796594752}{3927367318191772731306026707324910415905888856877494548042136821262610123610702671} a^{11} - \frac{1716555318794353709335948323602515035526613685178516887070150455636456363020961457}{3927367318191772731306026707324910415905888856877494548042136821262610123610702671} a^{10} + \frac{70173772517675987275825281201877524224771067424530276368843372967407301752382719}{3927367318191772731306026707324910415905888856877494548042136821262610123610702671} a^{9} + \frac{873192089527297926448516016612881257601442932114227306387495232585068089159973440}{3927367318191772731306026707324910415905888856877494548042136821262610123610702671} a^{8} - \frac{49209973384391399719788670235376374324327453938078077546545062509902063713306875}{126689268328766862300194409913706787609867382479919178969101187782664842697119441} a^{7} + \frac{1513385833172339286707953211837462575260314908875700704682854199390982719104542943}{3927367318191772731306026707324910415905888856877494548042136821262610123610702671} a^{6} - \frac{113908331212466997582171125881546888534045377351346202267007071191188177101811723}{3927367318191772731306026707324910415905888856877494548042136821262610123610702671} a^{5} + \frac{865110939643958204736241186211532068004501620706014878025091229855912706503697895}{3927367318191772731306026707324910415905888856877494548042136821262610123610702671} a^{4} + \frac{493272418790904582409247870199506372252213526197301512249205252716079735511303842}{3927367318191772731306026707324910415905888856877494548042136821262610123610702671} a^{3} + \frac{169628197797506138983361639422500068298247075918617111860748263252808062580170852}{3927367318191772731306026707324910415905888856877494548042136821262610123610702671} a^{2} + \frac{59965881997542373401419137306609836053425694524952246476198756560205799799240934}{126689268328766862300194409913706787609867382479919178969101187782664842697119441} a - \frac{1224158872469913384396468829733359800008762609370726507102790772619404507547}{22831008889667843269092522961561864770204970711825406193746835066257855955509}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2472314464659601600000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_9$ (as 27T2):
| An abelian group of order 27 |
| The 27 conjugacy class representatives for $C_3\times C_9$ |
| Character table for $C_3\times C_9$ is not computed |
Intermediate fields
| 3.3.494209.2, 3.3.1369.1, 3.3.494209.1, 3.3.361.1, 9.9.120706859316371329.1, 9.9.3512479453921.1, 9.9.165247690404112349401.1, 9.9.165247690404112349401.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{3}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{27}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 19 | Data not computed | ||||||
| $37$ | 37.9.8.1 | $x^{9} - 37$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
| 37.9.8.1 | $x^{9} - 37$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |
| 37.9.8.1 | $x^{9} - 37$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |