Properties

Label 27.27.383...529.6
Degree $27$
Signature $[27, 0]$
Discriminant $3.837\times 10^{59}$
Root discriminant \(161.00\)
Ramified primes $3,19$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_3^6.C_3^3:C_9$ (as 27T1470)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^27 - 216*x^25 - 126*x^24 + 18954*x^23 + 24975*x^22 - 875052*x^21 - 1892970*x^20 + 22692042*x^19 + 71110521*x^18 - 316638477*x^17 - 1432046169*x^16 + 1812081357*x^15 + 15499723005*x^14 + 5402467638*x^13 - 85210703568*x^12 - 119880614304*x^11 + 187324337502*x^10 + 524296119381*x^9 + 69677940285*x^8 - 774118036773*x^7 - 608211900027*x^6 + 298745384301*x^5 + 521853502770*x^4 + 104853930822*x^3 - 111313030545*x^2 - 61038316449*x - 8866910519)
 
gp: K = bnfinit(y^27 - 216*y^25 - 126*y^24 + 18954*y^23 + 24975*y^22 - 875052*y^21 - 1892970*y^20 + 22692042*y^19 + 71110521*y^18 - 316638477*y^17 - 1432046169*y^16 + 1812081357*y^15 + 15499723005*y^14 + 5402467638*y^13 - 85210703568*y^12 - 119880614304*y^11 + 187324337502*y^10 + 524296119381*y^9 + 69677940285*y^8 - 774118036773*y^7 - 608211900027*y^6 + 298745384301*y^5 + 521853502770*y^4 + 104853930822*y^3 - 111313030545*y^2 - 61038316449*y - 8866910519, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^27 - 216*x^25 - 126*x^24 + 18954*x^23 + 24975*x^22 - 875052*x^21 - 1892970*x^20 + 22692042*x^19 + 71110521*x^18 - 316638477*x^17 - 1432046169*x^16 + 1812081357*x^15 + 15499723005*x^14 + 5402467638*x^13 - 85210703568*x^12 - 119880614304*x^11 + 187324337502*x^10 + 524296119381*x^9 + 69677940285*x^8 - 774118036773*x^7 - 608211900027*x^6 + 298745384301*x^5 + 521853502770*x^4 + 104853930822*x^3 - 111313030545*x^2 - 61038316449*x - 8866910519);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^27 - 216*x^25 - 126*x^24 + 18954*x^23 + 24975*x^22 - 875052*x^21 - 1892970*x^20 + 22692042*x^19 + 71110521*x^18 - 316638477*x^17 - 1432046169*x^16 + 1812081357*x^15 + 15499723005*x^14 + 5402467638*x^13 - 85210703568*x^12 - 119880614304*x^11 + 187324337502*x^10 + 524296119381*x^9 + 69677940285*x^8 - 774118036773*x^7 - 608211900027*x^6 + 298745384301*x^5 + 521853502770*x^4 + 104853930822*x^3 - 111313030545*x^2 - 61038316449*x - 8866910519)
 

\( x^{27} - 216 x^{25} - 126 x^{24} + 18954 x^{23} + 24975 x^{22} - 875052 x^{21} - 1892970 x^{20} + \cdots - 8866910519 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $27$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[27, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(383707689246443888440321132287382098639043931374214514299529\) \(\medspace = 3^{82}\cdot 19^{16}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(161.00\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(3\), \(19\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $3$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{19}a^{14}-\frac{3}{19}a^{13}+\frac{2}{19}a^{12}+\frac{1}{19}a^{11}+\frac{8}{19}a^{10}+\frac{4}{19}a^{9}$, $\frac{1}{19}a^{15}-\frac{7}{19}a^{13}+\frac{7}{19}a^{12}-\frac{8}{19}a^{11}+\frac{9}{19}a^{10}-\frac{7}{19}a^{9}$, $\frac{1}{19}a^{16}+\frac{5}{19}a^{13}+\frac{6}{19}a^{12}-\frac{3}{19}a^{11}-\frac{8}{19}a^{10}+\frac{9}{19}a^{9}$, $\frac{1}{19}a^{17}+\frac{2}{19}a^{13}+\frac{6}{19}a^{12}+\frac{6}{19}a^{11}+\frac{7}{19}a^{10}-\frac{1}{19}a^{9}$, $\frac{1}{361}a^{18}-\frac{7}{361}a^{16}+\frac{7}{361}a^{15}-\frac{8}{361}a^{14}+\frac{28}{361}a^{13}+\frac{12}{361}a^{12}+\frac{2}{19}a^{11}+\frac{6}{19}a^{10}-\frac{8}{19}a^{9}+\frac{2}{19}a^{8}+\frac{2}{19}a^{7}-\frac{1}{19}a^{6}-\frac{4}{19}a^{5}+\frac{6}{19}a^{4}-\frac{2}{19}a^{3}$, $\frac{1}{361}a^{19}-\frac{7}{361}a^{17}+\frac{7}{361}a^{16}-\frac{8}{361}a^{15}+\frac{9}{361}a^{14}+\frac{69}{361}a^{13}+\frac{5}{19}a^{11}+\frac{3}{19}a^{10}-\frac{2}{19}a^{9}+\frac{2}{19}a^{8}-\frac{1}{19}a^{7}-\frac{4}{19}a^{6}+\frac{6}{19}a^{5}-\frac{2}{19}a^{4}$, $\frac{1}{361}a^{20}+\frac{7}{361}a^{17}+\frac{1}{361}a^{15}-\frac{6}{361}a^{14}-\frac{146}{361}a^{13}+\frac{84}{361}a^{12}-\frac{7}{19}a^{11}+\frac{9}{19}a^{9}-\frac{6}{19}a^{8}-\frac{9}{19}a^{7}-\frac{1}{19}a^{6}+\frac{8}{19}a^{5}+\frac{4}{19}a^{4}+\frac{5}{19}a^{3}$, $\frac{1}{6859}a^{21}-\frac{7}{6859}a^{19}+\frac{7}{6859}a^{18}+\frac{163}{6859}a^{17}-\frac{124}{6859}a^{16}-\frac{7}{6859}a^{15}-\frac{8}{361}a^{14}-\frac{17}{361}a^{13}-\frac{143}{361}a^{12}+\frac{40}{361}a^{11}-\frac{169}{361}a^{10}-\frac{115}{361}a^{9}+\frac{53}{361}a^{8}-\frac{108}{361}a^{7}-\frac{2}{361}a^{6}-\frac{1}{19}a^{4}-\frac{5}{19}a^{3}$, $\frac{1}{6859}a^{22}-\frac{7}{6859}a^{20}+\frac{7}{6859}a^{19}-\frac{8}{6859}a^{18}-\frac{124}{6859}a^{17}+\frac{107}{6859}a^{16}+\frac{5}{361}a^{15}-\frac{2}{361}a^{14}+\frac{42}{361}a^{13}+\frac{8}{361}a^{12}+\frac{78}{361}a^{11}-\frac{96}{361}a^{10}+\frac{148}{361}a^{9}-\frac{89}{361}a^{8}+\frac{17}{361}a^{7}+\frac{9}{19}a^{6}-\frac{3}{19}a^{5}-\frac{2}{19}a^{4}-\frac{1}{19}a^{3}$, $\frac{1}{6859}a^{23}+\frac{7}{6859}a^{20}+\frac{1}{6859}a^{18}+\frac{127}{6859}a^{17}+\frac{177}{6859}a^{16}-\frac{11}{6859}a^{15}-\frac{1}{361}a^{13}-\frac{1}{361}a^{12}-\frac{120}{361}a^{11}+\frac{105}{361}a^{10}+\frac{94}{361}a^{9}-\frac{68}{361}a^{8}-\frac{129}{361}a^{7}-\frac{14}{361}a^{6}-\frac{9}{19}a^{4}-\frac{5}{19}a^{3}$, $\frac{1}{912247}a^{24}+\frac{3}{48013}a^{23}-\frac{45}{912247}a^{22}+\frac{64}{912247}a^{21}+\frac{828}{912247}a^{20}+\frac{655}{912247}a^{19}+\frac{56}{130321}a^{18}+\frac{1262}{48013}a^{17}+\frac{1068}{48013}a^{16}-\frac{121}{48013}a^{15}+\frac{117}{6859}a^{14}+\frac{4866}{48013}a^{13}+\frac{19512}{48013}a^{12}-\frac{16496}{48013}a^{11}-\frac{1872}{6859}a^{10}-\frac{3347}{6859}a^{9}+\frac{36}{133}a^{8}+\frac{2}{361}a^{7}-\frac{300}{2527}a^{6}+\frac{31}{133}a^{5}+\frac{41}{133}a^{4}-\frac{55}{133}a^{3}+\frac{1}{7}a^{2}+\frac{3}{7}$, $\frac{1}{912247}a^{25}+\frac{31}{912247}a^{23}-\frac{31}{912247}a^{22}-\frac{27}{912247}a^{21}+\frac{408}{912247}a^{20}+\frac{696}{912247}a^{19}+\frac{16}{48013}a^{18}-\frac{537}{48013}a^{17}-\frac{853}{48013}a^{16}+\frac{1171}{48013}a^{15}-\frac{321}{48013}a^{14}+\frac{9347}{48013}a^{13}-\frac{3236}{6859}a^{12}-\frac{14871}{48013}a^{11}+\frac{3151}{6859}a^{10}-\frac{877}{2527}a^{9}-\frac{1230}{2527}a^{8}-\frac{34}{2527}a^{7}-\frac{12}{361}a^{6}+\frac{2}{7}a^{5}-\frac{33}{133}a^{4}+\frac{11}{133}a^{3}-\frac{1}{7}a^{2}+\frac{3}{7}a-\frac{3}{7}$, $\frac{1}{41\!\cdots\!91}a^{26}+\frac{16\!\cdots\!79}{41\!\cdots\!91}a^{25}+\frac{14\!\cdots\!94}{41\!\cdots\!91}a^{24}+\frac{17\!\cdots\!20}{41\!\cdots\!91}a^{23}-\frac{15\!\cdots\!60}{41\!\cdots\!91}a^{22}+\frac{13\!\cdots\!88}{21\!\cdots\!89}a^{21}+\frac{12\!\cdots\!78}{41\!\cdots\!91}a^{20}-\frac{55\!\cdots\!86}{41\!\cdots\!91}a^{19}+\frac{25\!\cdots\!98}{41\!\cdots\!91}a^{18}+\frac{60\!\cdots\!18}{31\!\cdots\!27}a^{17}-\frac{12\!\cdots\!09}{21\!\cdots\!89}a^{16}-\frac{12\!\cdots\!47}{21\!\cdots\!89}a^{15}-\frac{59\!\cdots\!63}{31\!\cdots\!27}a^{14}-\frac{44\!\cdots\!65}{21\!\cdots\!89}a^{13}-\frac{37\!\cdots\!17}{21\!\cdots\!89}a^{12}-\frac{14\!\cdots\!49}{31\!\cdots\!27}a^{11}-\frac{17\!\cdots\!90}{21\!\cdots\!89}a^{10}+\frac{63\!\cdots\!67}{21\!\cdots\!89}a^{9}+\frac{22\!\cdots\!01}{11\!\cdots\!31}a^{8}-\frac{32\!\cdots\!32}{11\!\cdots\!31}a^{7}-\frac{46\!\cdots\!20}{11\!\cdots\!31}a^{6}-\frac{30\!\cdots\!33}{60\!\cdots\!49}a^{5}+\frac{23\!\cdots\!14}{60\!\cdots\!49}a^{4}+\frac{23\!\cdots\!70}{60\!\cdots\!49}a^{3}-\frac{14\!\cdots\!50}{31\!\cdots\!71}a^{2}+\frac{38\!\cdots\!19}{31\!\cdots\!71}a-\frac{17\!\cdots\!64}{45\!\cdots\!53}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $26$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{51\!\cdots\!77}{95\!\cdots\!61}a^{26}-\frac{11\!\cdots\!05}{95\!\cdots\!61}a^{25}-\frac{10\!\cdots\!63}{95\!\cdots\!61}a^{24}+\frac{18\!\cdots\!24}{95\!\cdots\!61}a^{23}+\frac{93\!\cdots\!96}{95\!\cdots\!61}a^{22}-\frac{84\!\cdots\!76}{95\!\cdots\!61}a^{21}-\frac{22\!\cdots\!69}{50\!\cdots\!19}a^{20}+\frac{71\!\cdots\!04}{13\!\cdots\!23}a^{19}+\frac{11\!\cdots\!34}{95\!\cdots\!61}a^{18}+\frac{76\!\cdots\!86}{71\!\cdots\!17}a^{17}-\frac{96\!\cdots\!08}{50\!\cdots\!19}a^{16}-\frac{16\!\cdots\!97}{50\!\cdots\!19}a^{15}+\frac{84\!\cdots\!81}{50\!\cdots\!19}a^{14}+\frac{22\!\cdots\!32}{50\!\cdots\!19}a^{13}-\frac{34\!\cdots\!29}{50\!\cdots\!19}a^{12}-\frac{14\!\cdots\!49}{50\!\cdots\!19}a^{11}+\frac{44\!\cdots\!53}{50\!\cdots\!19}a^{10}+\frac{66\!\cdots\!28}{71\!\cdots\!17}a^{9}+\frac{19\!\cdots\!53}{26\!\cdots\!01}a^{8}-\frac{29\!\cdots\!51}{26\!\cdots\!01}a^{7}-\frac{42\!\cdots\!63}{26\!\cdots\!01}a^{6}+\frac{18\!\cdots\!88}{13\!\cdots\!79}a^{5}+\frac{15\!\cdots\!40}{13\!\cdots\!79}a^{4}+\frac{56\!\cdots\!66}{13\!\cdots\!79}a^{3}-\frac{14\!\cdots\!72}{72\!\cdots\!41}a^{2}-\frac{15\!\cdots\!65}{10\!\cdots\!63}a-\frac{18\!\cdots\!42}{72\!\cdots\!41}$, $\frac{89\!\cdots\!20}{95\!\cdots\!61}a^{26}-\frac{22\!\cdots\!24}{95\!\cdots\!61}a^{25}-\frac{18\!\cdots\!22}{95\!\cdots\!61}a^{24}+\frac{36\!\cdots\!36}{95\!\cdots\!61}a^{23}+\frac{16\!\cdots\!20}{95\!\cdots\!61}a^{22}-\frac{18\!\cdots\!55}{95\!\cdots\!61}a^{21}-\frac{39\!\cdots\!32}{50\!\cdots\!19}a^{20}+\frac{18\!\cdots\!26}{95\!\cdots\!61}a^{19}+\frac{20\!\cdots\!95}{95\!\cdots\!61}a^{18}+\frac{67\!\cdots\!46}{50\!\cdots\!19}a^{17}-\frac{24\!\cdots\!84}{71\!\cdots\!17}a^{16}-\frac{24\!\cdots\!68}{50\!\cdots\!19}a^{15}+\frac{15\!\cdots\!77}{50\!\cdots\!19}a^{14}+\frac{35\!\cdots\!93}{50\!\cdots\!19}a^{13}-\frac{66\!\cdots\!84}{50\!\cdots\!19}a^{12}-\frac{24\!\cdots\!48}{50\!\cdots\!19}a^{11}+\frac{59\!\cdots\!49}{50\!\cdots\!19}a^{10}+\frac{78\!\cdots\!08}{50\!\cdots\!19}a^{9}+\frac{24\!\cdots\!27}{26\!\cdots\!01}a^{8}-\frac{52\!\cdots\!34}{26\!\cdots\!01}a^{7}-\frac{60\!\cdots\!10}{26\!\cdots\!01}a^{6}+\frac{80\!\cdots\!53}{13\!\cdots\!79}a^{5}+\frac{23\!\cdots\!38}{13\!\cdots\!79}a^{4}+\frac{57\!\cdots\!89}{13\!\cdots\!79}a^{3}-\frac{24\!\cdots\!42}{72\!\cdots\!41}a^{2}-\frac{13\!\cdots\!10}{72\!\cdots\!41}a-\frac{19\!\cdots\!12}{72\!\cdots\!41}$, $\frac{10\!\cdots\!44}{58\!\cdots\!21}a^{26}+\frac{25\!\cdots\!96}{58\!\cdots\!21}a^{25}+\frac{22\!\cdots\!89}{58\!\cdots\!21}a^{24}-\frac{39\!\cdots\!69}{58\!\cdots\!21}a^{23}-\frac{27\!\cdots\!99}{83\!\cdots\!03}a^{22}+\frac{14\!\cdots\!86}{43\!\cdots\!37}a^{21}+\frac{87\!\cdots\!47}{58\!\cdots\!21}a^{20}-\frac{85\!\cdots\!92}{58\!\cdots\!21}a^{19}-\frac{23\!\cdots\!10}{58\!\cdots\!21}a^{18}-\frac{98\!\cdots\!19}{30\!\cdots\!59}a^{17}+\frac{19\!\cdots\!31}{30\!\cdots\!59}a^{16}+\frac{32\!\cdots\!33}{30\!\cdots\!59}a^{15}-\frac{17\!\cdots\!84}{30\!\cdots\!59}a^{14}-\frac{44\!\cdots\!22}{30\!\cdots\!59}a^{13}+\frac{74\!\cdots\!41}{30\!\cdots\!59}a^{12}+\frac{29\!\cdots\!46}{30\!\cdots\!59}a^{11}-\frac{38\!\cdots\!89}{30\!\cdots\!59}a^{10}-\frac{95\!\cdots\!58}{30\!\cdots\!59}a^{9}-\frac{34\!\cdots\!86}{16\!\cdots\!61}a^{8}+\frac{61\!\cdots\!80}{16\!\cdots\!61}a^{7}+\frac{80\!\cdots\!38}{16\!\cdots\!61}a^{6}-\frac{69\!\cdots\!39}{84\!\cdots\!19}a^{5}-\frac{29\!\cdots\!35}{84\!\cdots\!19}a^{4}-\frac{90\!\cdots\!51}{84\!\cdots\!19}a^{3}+\frac{29\!\cdots\!51}{44\!\cdots\!01}a^{2}+\frac{19\!\cdots\!30}{44\!\cdots\!01}a+\frac{30\!\cdots\!61}{44\!\cdots\!01}$, $\frac{21\!\cdots\!69}{58\!\cdots\!21}a^{26}-\frac{61\!\cdots\!79}{58\!\cdots\!21}a^{25}-\frac{44\!\cdots\!13}{58\!\cdots\!21}a^{24}+\frac{10\!\cdots\!47}{58\!\cdots\!21}a^{23}+\frac{20\!\cdots\!67}{30\!\cdots\!59}a^{22}-\frac{58\!\cdots\!77}{58\!\cdots\!21}a^{21}-\frac{17\!\cdots\!21}{58\!\cdots\!21}a^{20}+\frac{15\!\cdots\!20}{83\!\cdots\!03}a^{19}+\frac{68\!\cdots\!17}{83\!\cdots\!03}a^{18}+\frac{70\!\cdots\!77}{30\!\cdots\!59}a^{17}-\frac{41\!\cdots\!16}{30\!\cdots\!59}a^{16}-\frac{44\!\cdots\!59}{30\!\cdots\!59}a^{15}+\frac{38\!\cdots\!48}{30\!\cdots\!59}a^{14}+\frac{69\!\cdots\!17}{30\!\cdots\!59}a^{13}-\frac{18\!\cdots\!35}{30\!\cdots\!59}a^{12}-\frac{50\!\cdots\!80}{30\!\cdots\!59}a^{11}+\frac{34\!\cdots\!67}{30\!\cdots\!59}a^{10}+\frac{17\!\cdots\!31}{30\!\cdots\!59}a^{9}+\frac{21\!\cdots\!21}{16\!\cdots\!61}a^{8}-\frac{13\!\cdots\!73}{16\!\cdots\!61}a^{7}-\frac{90\!\cdots\!24}{16\!\cdots\!61}a^{6}+\frac{39\!\cdots\!63}{84\!\cdots\!19}a^{5}+\frac{39\!\cdots\!67}{84\!\cdots\!19}a^{4}-\frac{26\!\cdots\!31}{84\!\cdots\!19}a^{3}-\frac{51\!\cdots\!30}{44\!\cdots\!01}a^{2}-\frac{11\!\cdots\!18}{44\!\cdots\!01}a-\frac{18\!\cdots\!09}{44\!\cdots\!01}$, $\frac{87\!\cdots\!83}{83\!\cdots\!03}a^{26}+\frac{14\!\cdots\!65}{58\!\cdots\!21}a^{25}+\frac{12\!\cdots\!81}{58\!\cdots\!21}a^{24}-\frac{22\!\cdots\!65}{58\!\cdots\!21}a^{23}-\frac{15\!\cdots\!07}{83\!\cdots\!03}a^{22}+\frac{15\!\cdots\!65}{83\!\cdots\!03}a^{21}+\frac{38\!\cdots\!98}{43\!\cdots\!37}a^{20}-\frac{31\!\cdots\!20}{58\!\cdots\!21}a^{19}-\frac{13\!\cdots\!55}{58\!\cdots\!21}a^{18}-\frac{85\!\cdots\!06}{43\!\cdots\!37}a^{17}+\frac{11\!\cdots\!35}{30\!\cdots\!59}a^{16}+\frac{19\!\cdots\!25}{30\!\cdots\!59}a^{15}-\frac{10\!\cdots\!09}{30\!\cdots\!59}a^{14}-\frac{25\!\cdots\!08}{30\!\cdots\!59}a^{13}+\frac{42\!\cdots\!21}{30\!\cdots\!59}a^{12}+\frac{17\!\cdots\!39}{30\!\cdots\!59}a^{11}-\frac{22\!\cdots\!37}{43\!\cdots\!37}a^{10}-\frac{55\!\cdots\!45}{30\!\cdots\!59}a^{9}-\frac{21\!\cdots\!38}{16\!\cdots\!61}a^{8}+\frac{35\!\cdots\!89}{16\!\cdots\!61}a^{7}+\frac{48\!\cdots\!02}{16\!\cdots\!61}a^{6}-\frac{48\!\cdots\!83}{12\!\cdots\!17}a^{5}-\frac{17\!\cdots\!60}{84\!\cdots\!19}a^{4}-\frac{57\!\cdots\!26}{84\!\cdots\!19}a^{3}+\frac{17\!\cdots\!60}{44\!\cdots\!01}a^{2}+\frac{11\!\cdots\!59}{44\!\cdots\!01}a+\frac{18\!\cdots\!27}{44\!\cdots\!01}$, $\frac{41\!\cdots\!05}{58\!\cdots\!21}a^{26}+\frac{95\!\cdots\!95}{58\!\cdots\!21}a^{25}+\frac{87\!\cdots\!15}{58\!\cdots\!21}a^{24}-\frac{14\!\cdots\!76}{58\!\cdots\!21}a^{23}-\frac{39\!\cdots\!58}{30\!\cdots\!59}a^{22}+\frac{69\!\cdots\!13}{58\!\cdots\!21}a^{21}+\frac{34\!\cdots\!57}{58\!\cdots\!21}a^{20}-\frac{12\!\cdots\!33}{58\!\cdots\!21}a^{19}-\frac{93\!\cdots\!43}{58\!\cdots\!21}a^{18}-\frac{41\!\cdots\!35}{30\!\cdots\!59}a^{17}+\frac{78\!\cdots\!85}{30\!\cdots\!59}a^{16}+\frac{13\!\cdots\!84}{30\!\cdots\!59}a^{15}-\frac{69\!\cdots\!77}{30\!\cdots\!59}a^{14}-\frac{17\!\cdots\!32}{30\!\cdots\!59}a^{13}+\frac{28\!\cdots\!94}{30\!\cdots\!59}a^{12}+\frac{11\!\cdots\!13}{30\!\cdots\!59}a^{11}-\frac{98\!\cdots\!72}{30\!\cdots\!59}a^{10}-\frac{54\!\cdots\!81}{43\!\cdots\!37}a^{9}-\frac{14\!\cdots\!01}{16\!\cdots\!61}a^{8}+\frac{24\!\cdots\!94}{16\!\cdots\!61}a^{7}+\frac{47\!\cdots\!91}{23\!\cdots\!23}a^{6}-\frac{23\!\cdots\!53}{84\!\cdots\!19}a^{5}-\frac{17\!\cdots\!74}{12\!\cdots\!17}a^{4}-\frac{39\!\cdots\!41}{84\!\cdots\!19}a^{3}+\frac{11\!\cdots\!75}{44\!\cdots\!01}a^{2}+\frac{11\!\cdots\!28}{63\!\cdots\!43}a+\frac{12\!\cdots\!13}{44\!\cdots\!01}$, $\frac{60\!\cdots\!02}{58\!\cdots\!21}a^{26}-\frac{13\!\cdots\!31}{58\!\cdots\!21}a^{25}-\frac{12\!\cdots\!01}{58\!\cdots\!21}a^{24}+\frac{30\!\cdots\!54}{83\!\cdots\!03}a^{23}+\frac{10\!\cdots\!57}{58\!\cdots\!21}a^{22}-\frac{99\!\cdots\!15}{58\!\cdots\!21}a^{21}-\frac{71\!\cdots\!85}{83\!\cdots\!03}a^{20}+\frac{17\!\cdots\!49}{83\!\cdots\!03}a^{19}+\frac{13\!\cdots\!95}{58\!\cdots\!21}a^{18}+\frac{61\!\cdots\!85}{30\!\cdots\!59}a^{17}-\frac{11\!\cdots\!16}{30\!\cdots\!59}a^{16}-\frac{19\!\cdots\!48}{30\!\cdots\!59}a^{15}+\frac{10\!\cdots\!89}{30\!\cdots\!59}a^{14}+\frac{25\!\cdots\!95}{30\!\cdots\!59}a^{13}-\frac{41\!\cdots\!22}{30\!\cdots\!59}a^{12}-\frac{17\!\cdots\!89}{30\!\cdots\!59}a^{11}+\frac{15\!\cdots\!04}{30\!\cdots\!59}a^{10}+\frac{55\!\cdots\!96}{30\!\cdots\!59}a^{9}+\frac{20\!\cdots\!77}{16\!\cdots\!61}a^{8}-\frac{35\!\cdots\!91}{16\!\cdots\!61}a^{7}-\frac{47\!\cdots\!59}{16\!\cdots\!61}a^{6}+\frac{35\!\cdots\!13}{84\!\cdots\!19}a^{5}+\frac{25\!\cdots\!83}{12\!\cdots\!17}a^{4}+\frac{55\!\cdots\!68}{84\!\cdots\!19}a^{3}-\frac{17\!\cdots\!01}{44\!\cdots\!01}a^{2}-\frac{11\!\cdots\!67}{44\!\cdots\!01}a-\frac{18\!\cdots\!11}{44\!\cdots\!01}$, $\frac{14\!\cdots\!64}{58\!\cdots\!21}a^{26}+\frac{34\!\cdots\!69}{58\!\cdots\!21}a^{25}+\frac{30\!\cdots\!54}{58\!\cdots\!21}a^{24}-\frac{54\!\cdots\!20}{58\!\cdots\!21}a^{23}-\frac{26\!\cdots\!71}{58\!\cdots\!21}a^{22}+\frac{26\!\cdots\!93}{58\!\cdots\!21}a^{21}+\frac{12\!\cdots\!28}{58\!\cdots\!21}a^{20}-\frac{12\!\cdots\!95}{58\!\cdots\!21}a^{19}-\frac{32\!\cdots\!29}{58\!\cdots\!21}a^{18}-\frac{13\!\cdots\!55}{30\!\cdots\!59}a^{17}+\frac{27\!\cdots\!97}{30\!\cdots\!59}a^{16}+\frac{44\!\cdots\!86}{30\!\cdots\!59}a^{15}-\frac{24\!\cdots\!23}{30\!\cdots\!59}a^{14}-\frac{32\!\cdots\!42}{16\!\cdots\!61}a^{13}+\frac{10\!\cdots\!52}{30\!\cdots\!59}a^{12}+\frac{41\!\cdots\!68}{30\!\cdots\!59}a^{11}-\frac{50\!\cdots\!00}{30\!\cdots\!59}a^{10}-\frac{13\!\cdots\!79}{30\!\cdots\!59}a^{9}-\frac{48\!\cdots\!77}{16\!\cdots\!61}a^{8}+\frac{85\!\cdots\!14}{16\!\cdots\!61}a^{7}+\frac{11\!\cdots\!67}{16\!\cdots\!61}a^{6}-\frac{91\!\cdots\!15}{84\!\cdots\!19}a^{5}-\frac{41\!\cdots\!47}{84\!\cdots\!19}a^{4}-\frac{12\!\cdots\!96}{84\!\cdots\!19}a^{3}+\frac{41\!\cdots\!77}{44\!\cdots\!01}a^{2}+\frac{27\!\cdots\!97}{44\!\cdots\!01}a+\frac{42\!\cdots\!18}{44\!\cdots\!01}$, $\frac{17\!\cdots\!84}{41\!\cdots\!91}a^{26}-\frac{41\!\cdots\!98}{41\!\cdots\!91}a^{25}-\frac{37\!\cdots\!93}{41\!\cdots\!91}a^{24}+\frac{64\!\cdots\!05}{41\!\cdots\!91}a^{23}+\frac{32\!\cdots\!96}{41\!\cdots\!91}a^{22}-\frac{30\!\cdots\!21}{41\!\cdots\!91}a^{21}-\frac{14\!\cdots\!59}{41\!\cdots\!91}a^{20}+\frac{73\!\cdots\!93}{41\!\cdots\!91}a^{19}+\frac{40\!\cdots\!68}{41\!\cdots\!91}a^{18}+\frac{25\!\cdots\!88}{31\!\cdots\!27}a^{17}-\frac{33\!\cdots\!26}{21\!\cdots\!89}a^{16}-\frac{56\!\cdots\!96}{21\!\cdots\!89}a^{15}+\frac{42\!\cdots\!89}{31\!\cdots\!27}a^{14}+\frac{76\!\cdots\!63}{21\!\cdots\!89}a^{13}-\frac{12\!\cdots\!16}{21\!\cdots\!89}a^{12}-\frac{73\!\cdots\!36}{31\!\cdots\!27}a^{11}+\frac{51\!\cdots\!34}{21\!\cdots\!89}a^{10}+\frac{16\!\cdots\!55}{21\!\cdots\!89}a^{9}+\frac{61\!\cdots\!27}{11\!\cdots\!31}a^{8}-\frac{55\!\cdots\!86}{60\!\cdots\!49}a^{7}-\frac{14\!\cdots\!97}{11\!\cdots\!31}a^{6}+\frac{11\!\cdots\!12}{60\!\cdots\!49}a^{5}+\frac{52\!\cdots\!95}{60\!\cdots\!49}a^{4}+\frac{85\!\cdots\!50}{31\!\cdots\!71}a^{3}-\frac{51\!\cdots\!35}{31\!\cdots\!71}a^{2}-\frac{34\!\cdots\!46}{31\!\cdots\!71}a-\frac{75\!\cdots\!34}{45\!\cdots\!53}$, $\frac{27\!\cdots\!37}{41\!\cdots\!91}a^{26}+\frac{66\!\cdots\!72}{41\!\cdots\!91}a^{25}+\frac{58\!\cdots\!67}{41\!\cdots\!91}a^{24}-\frac{55\!\cdots\!96}{21\!\cdots\!89}a^{23}-\frac{50\!\cdots\!60}{41\!\cdots\!91}a^{22}+\frac{50\!\cdots\!94}{41\!\cdots\!91}a^{21}+\frac{23\!\cdots\!27}{41\!\cdots\!91}a^{20}-\frac{26\!\cdots\!16}{41\!\cdots\!91}a^{19}-\frac{62\!\cdots\!26}{41\!\cdots\!91}a^{18}-\frac{25\!\cdots\!26}{21\!\cdots\!89}a^{17}+\frac{52\!\cdots\!26}{21\!\cdots\!89}a^{16}+\frac{84\!\cdots\!77}{21\!\cdots\!89}a^{15}-\frac{46\!\cdots\!84}{21\!\cdots\!89}a^{14}-\frac{11\!\cdots\!02}{21\!\cdots\!89}a^{13}+\frac{19\!\cdots\!52}{21\!\cdots\!89}a^{12}+\frac{78\!\cdots\!91}{21\!\cdots\!89}a^{11}-\frac{92\!\cdots\!93}{21\!\cdots\!89}a^{10}-\frac{35\!\cdots\!81}{31\!\cdots\!27}a^{9}-\frac{92\!\cdots\!91}{11\!\cdots\!31}a^{8}+\frac{16\!\cdots\!31}{11\!\cdots\!31}a^{7}+\frac{21\!\cdots\!32}{11\!\cdots\!31}a^{6}-\frac{23\!\cdots\!99}{86\!\cdots\!07}a^{5}-\frac{79\!\cdots\!88}{60\!\cdots\!49}a^{4}-\frac{13\!\cdots\!70}{31\!\cdots\!71}a^{3}+\frac{78\!\cdots\!72}{31\!\cdots\!71}a^{2}+\frac{75\!\cdots\!25}{45\!\cdots\!53}a+\frac{82\!\cdots\!01}{31\!\cdots\!71}$, $\frac{61\!\cdots\!19}{41\!\cdots\!91}a^{26}+\frac{12\!\cdots\!77}{41\!\cdots\!91}a^{25}+\frac{13\!\cdots\!97}{41\!\cdots\!91}a^{24}-\frac{18\!\cdots\!87}{41\!\cdots\!91}a^{23}-\frac{11\!\cdots\!58}{41\!\cdots\!91}a^{22}+\frac{71\!\cdots\!87}{41\!\cdots\!91}a^{21}+\frac{52\!\cdots\!56}{41\!\cdots\!91}a^{20}+\frac{12\!\cdots\!94}{41\!\cdots\!91}a^{19}-\frac{20\!\cdots\!84}{59\!\cdots\!13}a^{18}-\frac{81\!\cdots\!83}{21\!\cdots\!89}a^{17}+\frac{11\!\cdots\!38}{21\!\cdots\!89}a^{16}+\frac{11\!\cdots\!42}{11\!\cdots\!31}a^{15}-\frac{10\!\cdots\!74}{21\!\cdots\!89}a^{14}-\frac{29\!\cdots\!13}{21\!\cdots\!89}a^{13}+\frac{59\!\cdots\!03}{31\!\cdots\!27}a^{12}+\frac{19\!\cdots\!32}{21\!\cdots\!89}a^{11}+\frac{21\!\cdots\!09}{21\!\cdots\!89}a^{10}-\frac{61\!\cdots\!11}{21\!\cdots\!89}a^{9}-\frac{25\!\cdots\!78}{11\!\cdots\!31}a^{8}+\frac{38\!\cdots\!66}{11\!\cdots\!31}a^{7}+\frac{55\!\cdots\!65}{11\!\cdots\!31}a^{6}-\frac{33\!\cdots\!06}{60\!\cdots\!49}a^{5}-\frac{20\!\cdots\!34}{60\!\cdots\!49}a^{4}-\frac{66\!\cdots\!29}{60\!\cdots\!49}a^{3}+\frac{19\!\cdots\!53}{31\!\cdots\!71}a^{2}+\frac{13\!\cdots\!25}{31\!\cdots\!71}a+\frac{21\!\cdots\!64}{31\!\cdots\!71}$, $\frac{28\!\cdots\!13}{41\!\cdots\!91}a^{26}+\frac{65\!\cdots\!03}{41\!\cdots\!91}a^{25}+\frac{60\!\cdots\!60}{41\!\cdots\!91}a^{24}-\frac{10\!\cdots\!11}{41\!\cdots\!91}a^{23}-\frac{51\!\cdots\!52}{41\!\cdots\!91}a^{22}+\frac{47\!\cdots\!39}{41\!\cdots\!91}a^{21}+\frac{12\!\cdots\!59}{21\!\cdots\!89}a^{20}-\frac{41\!\cdots\!75}{41\!\cdots\!91}a^{19}-\frac{64\!\cdots\!66}{41\!\cdots\!91}a^{18}-\frac{29\!\cdots\!61}{21\!\cdots\!89}a^{17}+\frac{28\!\cdots\!71}{11\!\cdots\!31}a^{16}+\frac{92\!\cdots\!34}{21\!\cdots\!89}a^{15}-\frac{47\!\cdots\!66}{21\!\cdots\!89}a^{14}-\frac{65\!\cdots\!90}{11\!\cdots\!31}a^{13}+\frac{19\!\cdots\!16}{21\!\cdots\!89}a^{12}+\frac{11\!\cdots\!49}{31\!\cdots\!27}a^{11}-\frac{36\!\cdots\!90}{21\!\cdots\!89}a^{10}-\frac{26\!\cdots\!48}{21\!\cdots\!89}a^{9}-\frac{10\!\cdots\!29}{11\!\cdots\!31}a^{8}+\frac{16\!\cdots\!16}{11\!\cdots\!31}a^{7}+\frac{23\!\cdots\!65}{11\!\cdots\!31}a^{6}-\frac{17\!\cdots\!79}{86\!\cdots\!07}a^{5}-\frac{86\!\cdots\!44}{60\!\cdots\!49}a^{4}-\frac{29\!\cdots\!64}{60\!\cdots\!49}a^{3}+\frac{83\!\cdots\!67}{31\!\cdots\!71}a^{2}+\frac{59\!\cdots\!01}{31\!\cdots\!71}a+\frac{13\!\cdots\!33}{45\!\cdots\!53}$, $\frac{11\!\cdots\!31}{41\!\cdots\!91}a^{26}-\frac{27\!\cdots\!65}{41\!\cdots\!91}a^{25}-\frac{23\!\cdots\!66}{41\!\cdots\!91}a^{24}+\frac{42\!\cdots\!66}{41\!\cdots\!91}a^{23}+\frac{20\!\cdots\!26}{41\!\cdots\!91}a^{22}-\frac{20\!\cdots\!73}{41\!\cdots\!91}a^{21}-\frac{94\!\cdots\!46}{41\!\cdots\!91}a^{20}+\frac{11\!\cdots\!14}{41\!\cdots\!91}a^{19}+\frac{25\!\cdots\!05}{41\!\cdots\!91}a^{18}+\frac{10\!\cdots\!44}{21\!\cdots\!89}a^{17}-\frac{11\!\cdots\!17}{11\!\cdots\!31}a^{16}-\frac{18\!\cdots\!51}{11\!\cdots\!31}a^{15}+\frac{19\!\cdots\!70}{21\!\cdots\!89}a^{14}+\frac{47\!\cdots\!43}{21\!\cdots\!89}a^{13}-\frac{80\!\cdots\!96}{21\!\cdots\!89}a^{12}-\frac{45\!\cdots\!33}{31\!\cdots\!27}a^{11}+\frac{42\!\cdots\!25}{21\!\cdots\!89}a^{10}+\frac{10\!\cdots\!71}{21\!\cdots\!89}a^{9}+\frac{36\!\cdots\!90}{11\!\cdots\!31}a^{8}-\frac{65\!\cdots\!45}{11\!\cdots\!31}a^{7}-\frac{85\!\cdots\!54}{11\!\cdots\!31}a^{6}+\frac{10\!\cdots\!12}{86\!\cdots\!07}a^{5}+\frac{32\!\cdots\!96}{60\!\cdots\!49}a^{4}+\frac{97\!\cdots\!32}{60\!\cdots\!49}a^{3}-\frac{31\!\cdots\!68}{31\!\cdots\!71}a^{2}-\frac{20\!\cdots\!85}{31\!\cdots\!71}a-\frac{46\!\cdots\!06}{45\!\cdots\!53}$, $\frac{35\!\cdots\!19}{21\!\cdots\!89}a^{26}+\frac{92\!\cdots\!64}{21\!\cdots\!89}a^{25}+\frac{74\!\cdots\!47}{21\!\cdots\!89}a^{24}-\frac{14\!\cdots\!90}{21\!\cdots\!89}a^{23}-\frac{91\!\cdots\!40}{31\!\cdots\!27}a^{22}+\frac{11\!\cdots\!66}{31\!\cdots\!27}a^{21}+\frac{29\!\cdots\!32}{21\!\cdots\!89}a^{20}-\frac{97\!\cdots\!87}{21\!\cdots\!89}a^{19}-\frac{80\!\cdots\!26}{21\!\cdots\!89}a^{18}-\frac{44\!\cdots\!91}{21\!\cdots\!89}a^{17}+\frac{67\!\cdots\!33}{11\!\cdots\!31}a^{16}+\frac{92\!\cdots\!10}{11\!\cdots\!31}a^{15}-\frac{62\!\cdots\!08}{11\!\cdots\!31}a^{14}-\frac{13\!\cdots\!47}{11\!\cdots\!31}a^{13}+\frac{28\!\cdots\!62}{11\!\cdots\!31}a^{12}+\frac{93\!\cdots\!19}{11\!\cdots\!31}a^{11}-\frac{36\!\cdots\!26}{11\!\cdots\!31}a^{10}-\frac{31\!\cdots\!21}{11\!\cdots\!31}a^{9}-\frac{14\!\cdots\!32}{11\!\cdots\!31}a^{8}+\frac{22\!\cdots\!32}{60\!\cdots\!49}a^{7}+\frac{20\!\cdots\!50}{60\!\cdots\!49}a^{6}-\frac{91\!\cdots\!02}{60\!\cdots\!49}a^{5}-\frac{15\!\cdots\!26}{60\!\cdots\!49}a^{4}-\frac{11\!\cdots\!26}{31\!\cdots\!71}a^{3}+\frac{18\!\cdots\!69}{31\!\cdots\!71}a^{2}+\frac{76\!\cdots\!23}{31\!\cdots\!71}a+\frac{86\!\cdots\!51}{31\!\cdots\!71}$, $\frac{16\!\cdots\!72}{41\!\cdots\!91}a^{26}+\frac{39\!\cdots\!27}{41\!\cdots\!91}a^{25}+\frac{34\!\cdots\!38}{41\!\cdots\!91}a^{24}-\frac{62\!\cdots\!77}{41\!\cdots\!91}a^{23}-\frac{30\!\cdots\!98}{41\!\cdots\!91}a^{22}+\frac{82\!\cdots\!75}{11\!\cdots\!31}a^{21}+\frac{13\!\cdots\!15}{41\!\cdots\!91}a^{20}-\frac{14\!\cdots\!38}{41\!\cdots\!91}a^{19}-\frac{19\!\cdots\!37}{21\!\cdots\!89}a^{18}-\frac{22\!\cdots\!64}{31\!\cdots\!27}a^{17}+\frac{31\!\cdots\!17}{21\!\cdots\!89}a^{16}+\frac{50\!\cdots\!97}{21\!\cdots\!89}a^{15}-\frac{39\!\cdots\!88}{31\!\cdots\!27}a^{14}-\frac{69\!\cdots\!09}{21\!\cdots\!89}a^{13}+\frac{11\!\cdots\!64}{21\!\cdots\!89}a^{12}+\frac{35\!\cdots\!92}{16\!\cdots\!33}a^{11}-\frac{61\!\cdots\!35}{21\!\cdots\!89}a^{10}-\frac{78\!\cdots\!88}{11\!\cdots\!31}a^{9}-\frac{53\!\cdots\!19}{11\!\cdots\!31}a^{8}+\frac{97\!\cdots\!94}{11\!\cdots\!31}a^{7}+\frac{12\!\cdots\!53}{11\!\cdots\!31}a^{6}-\frac{11\!\cdots\!26}{60\!\cdots\!49}a^{5}-\frac{47\!\cdots\!25}{60\!\cdots\!49}a^{4}-\frac{14\!\cdots\!18}{60\!\cdots\!49}a^{3}+\frac{47\!\cdots\!69}{31\!\cdots\!71}a^{2}+\frac{30\!\cdots\!54}{31\!\cdots\!71}a+\frac{66\!\cdots\!54}{45\!\cdots\!53}$, $\frac{53\!\cdots\!16}{41\!\cdots\!91}a^{26}+\frac{91\!\cdots\!15}{41\!\cdots\!91}a^{25}+\frac{11\!\cdots\!84}{41\!\cdots\!91}a^{24}-\frac{12\!\cdots\!63}{41\!\cdots\!91}a^{23}-\frac{99\!\cdots\!10}{41\!\cdots\!91}a^{22}+\frac{34\!\cdots\!33}{41\!\cdots\!91}a^{21}+\frac{46\!\cdots\!91}{41\!\cdots\!91}a^{20}+\frac{33\!\cdots\!58}{59\!\cdots\!13}a^{19}-\frac{12\!\cdots\!71}{41\!\cdots\!91}a^{18}-\frac{89\!\cdots\!03}{21\!\cdots\!89}a^{17}+\frac{10\!\cdots\!63}{21\!\cdots\!89}a^{16}+\frac{22\!\cdots\!62}{21\!\cdots\!89}a^{15}-\frac{12\!\cdots\!36}{31\!\cdots\!27}a^{14}-\frac{28\!\cdots\!38}{21\!\cdots\!89}a^{13}+\frac{15\!\cdots\!95}{11\!\cdots\!31}a^{12}+\frac{18\!\cdots\!26}{21\!\cdots\!89}a^{11}+\frac{62\!\cdots\!40}{31\!\cdots\!71}a^{10}-\frac{55\!\cdots\!71}{21\!\cdots\!89}a^{9}-\frac{29\!\cdots\!76}{11\!\cdots\!31}a^{8}+\frac{31\!\cdots\!92}{11\!\cdots\!31}a^{7}+\frac{84\!\cdots\!49}{16\!\cdots\!33}a^{6}+\frac{15\!\cdots\!40}{86\!\cdots\!07}a^{5}-\frac{10\!\cdots\!66}{31\!\cdots\!71}a^{4}-\frac{12\!\cdots\!01}{86\!\cdots\!07}a^{3}+\frac{18\!\cdots\!84}{31\!\cdots\!71}a^{2}+\frac{15\!\cdots\!01}{31\!\cdots\!71}a+\frac{27\!\cdots\!05}{31\!\cdots\!71}$, $\frac{12\!\cdots\!65}{41\!\cdots\!91}a^{26}-\frac{33\!\cdots\!14}{41\!\cdots\!91}a^{25}-\frac{25\!\cdots\!50}{41\!\cdots\!91}a^{24}+\frac{55\!\cdots\!55}{41\!\cdots\!91}a^{23}+\frac{21\!\cdots\!19}{41\!\cdots\!91}a^{22}-\frac{29\!\cdots\!60}{41\!\cdots\!91}a^{21}-\frac{99\!\cdots\!13}{41\!\cdots\!91}a^{20}+\frac{43\!\cdots\!74}{41\!\cdots\!91}a^{19}+\frac{26\!\cdots\!07}{41\!\cdots\!91}a^{18}+\frac{68\!\cdots\!05}{21\!\cdots\!89}a^{17}-\frac{32\!\cdots\!28}{31\!\cdots\!27}a^{16}-\frac{29\!\cdots\!28}{21\!\cdots\!89}a^{15}+\frac{10\!\cdots\!87}{11\!\cdots\!31}a^{14}+\frac{43\!\cdots\!60}{21\!\cdots\!89}a^{13}-\frac{88\!\cdots\!82}{21\!\cdots\!89}a^{12}-\frac{30\!\cdots\!55}{21\!\cdots\!89}a^{11}+\frac{76\!\cdots\!98}{21\!\cdots\!89}a^{10}+\frac{98\!\cdots\!91}{21\!\cdots\!89}a^{9}+\frac{32\!\cdots\!52}{11\!\cdots\!31}a^{8}-\frac{64\!\cdots\!18}{11\!\cdots\!31}a^{7}-\frac{79\!\cdots\!53}{11\!\cdots\!31}a^{6}+\frac{36\!\cdots\!45}{31\!\cdots\!71}a^{5}+\frac{30\!\cdots\!15}{60\!\cdots\!49}a^{4}+\frac{95\!\cdots\!92}{60\!\cdots\!49}a^{3}-\frac{29\!\cdots\!45}{31\!\cdots\!71}a^{2}-\frac{20\!\cdots\!50}{31\!\cdots\!71}a-\frac{32\!\cdots\!61}{31\!\cdots\!71}$, $\frac{23\!\cdots\!97}{41\!\cdots\!91}a^{26}-\frac{81\!\cdots\!84}{59\!\cdots\!13}a^{25}-\frac{49\!\cdots\!73}{41\!\cdots\!91}a^{24}+\frac{12\!\cdots\!88}{59\!\cdots\!13}a^{23}+\frac{42\!\cdots\!62}{41\!\cdots\!91}a^{22}-\frac{23\!\cdots\!53}{21\!\cdots\!89}a^{21}-\frac{19\!\cdots\!47}{41\!\cdots\!91}a^{20}+\frac{27\!\cdots\!88}{41\!\cdots\!91}a^{19}+\frac{53\!\cdots\!82}{41\!\cdots\!91}a^{18}+\frac{29\!\cdots\!79}{31\!\cdots\!27}a^{17}-\frac{33\!\cdots\!65}{16\!\cdots\!33}a^{16}-\frac{70\!\cdots\!01}{21\!\cdots\!89}a^{15}+\frac{39\!\cdots\!08}{21\!\cdots\!89}a^{14}+\frac{96\!\cdots\!35}{21\!\cdots\!89}a^{13}-\frac{16\!\cdots\!58}{21\!\cdots\!89}a^{12}-\frac{65\!\cdots\!70}{21\!\cdots\!89}a^{11}+\frac{96\!\cdots\!32}{21\!\cdots\!89}a^{10}+\frac{21\!\cdots\!79}{21\!\cdots\!89}a^{9}+\frac{74\!\cdots\!46}{11\!\cdots\!31}a^{8}-\frac{19\!\cdots\!53}{16\!\cdots\!33}a^{7}-\frac{17\!\cdots\!61}{11\!\cdots\!31}a^{6}+\frac{15\!\cdots\!57}{60\!\cdots\!49}a^{5}+\frac{66\!\cdots\!27}{60\!\cdots\!49}a^{4}+\frac{19\!\cdots\!64}{60\!\cdots\!49}a^{3}-\frac{66\!\cdots\!32}{31\!\cdots\!71}a^{2}-\frac{42\!\cdots\!31}{31\!\cdots\!71}a-\frac{64\!\cdots\!31}{31\!\cdots\!71}$, $\frac{71\!\cdots\!01}{41\!\cdots\!91}a^{26}+\frac{21\!\cdots\!37}{41\!\cdots\!91}a^{25}+\frac{14\!\cdots\!35}{41\!\cdots\!91}a^{24}-\frac{36\!\cdots\!78}{41\!\cdots\!91}a^{23}-\frac{12\!\cdots\!50}{41\!\cdots\!91}a^{22}+\frac{20\!\cdots\!21}{41\!\cdots\!91}a^{21}+\frac{30\!\cdots\!21}{21\!\cdots\!89}a^{20}-\frac{43\!\cdots\!56}{41\!\cdots\!91}a^{19}-\frac{15\!\cdots\!14}{41\!\cdots\!91}a^{18}-\frac{14\!\cdots\!46}{21\!\cdots\!89}a^{17}+\frac{13\!\cdots\!12}{21\!\cdots\!89}a^{16}+\frac{70\!\cdots\!51}{11\!\cdots\!31}a^{15}-\frac{18\!\cdots\!50}{31\!\cdots\!27}a^{14}-\frac{21\!\cdots\!13}{21\!\cdots\!89}a^{13}+\frac{64\!\cdots\!96}{21\!\cdots\!89}a^{12}+\frac{16\!\cdots\!53}{21\!\cdots\!89}a^{11}-\frac{12\!\cdots\!23}{21\!\cdots\!89}a^{10}-\frac{56\!\cdots\!10}{21\!\cdots\!89}a^{9}-\frac{47\!\cdots\!70}{11\!\cdots\!31}a^{8}+\frac{45\!\cdots\!26}{11\!\cdots\!31}a^{7}+\frac{26\!\cdots\!84}{11\!\cdots\!31}a^{6}-\frac{13\!\cdots\!76}{60\!\cdots\!49}a^{5}-\frac{12\!\cdots\!14}{60\!\cdots\!49}a^{4}+\frac{15\!\cdots\!93}{60\!\cdots\!49}a^{3}+\frac{16\!\cdots\!41}{31\!\cdots\!71}a^{2}+\frac{29\!\cdots\!46}{31\!\cdots\!71}a-\frac{12\!\cdots\!20}{31\!\cdots\!71}$, $\frac{27\!\cdots\!94}{58\!\cdots\!21}a^{26}+\frac{66\!\cdots\!66}{58\!\cdots\!21}a^{25}+\frac{57\!\cdots\!03}{58\!\cdots\!21}a^{24}-\frac{10\!\cdots\!48}{58\!\cdots\!21}a^{23}-\frac{49\!\cdots\!55}{58\!\cdots\!21}a^{22}+\frac{51\!\cdots\!56}{58\!\cdots\!21}a^{21}+\frac{22\!\cdots\!50}{58\!\cdots\!21}a^{20}-\frac{31\!\cdots\!85}{58\!\cdots\!21}a^{19}-\frac{61\!\cdots\!63}{58\!\cdots\!21}a^{18}-\frac{24\!\cdots\!75}{30\!\cdots\!59}a^{17}+\frac{51\!\cdots\!68}{30\!\cdots\!59}a^{16}+\frac{82\!\cdots\!17}{30\!\cdots\!59}a^{15}-\frac{46\!\cdots\!54}{30\!\cdots\!59}a^{14}-\frac{11\!\cdots\!07}{30\!\cdots\!59}a^{13}+\frac{19\!\cdots\!55}{30\!\cdots\!59}a^{12}+\frac{76\!\cdots\!29}{30\!\cdots\!59}a^{11}-\frac{10\!\cdots\!77}{30\!\cdots\!59}a^{10}-\frac{24\!\cdots\!38}{30\!\cdots\!59}a^{9}-\frac{87\!\cdots\!80}{16\!\cdots\!61}a^{8}+\frac{15\!\cdots\!07}{16\!\cdots\!61}a^{7}+\frac{10\!\cdots\!21}{84\!\cdots\!19}a^{6}-\frac{13\!\cdots\!20}{63\!\cdots\!43}a^{5}-\frac{77\!\cdots\!44}{84\!\cdots\!19}a^{4}-\frac{23\!\cdots\!31}{84\!\cdots\!19}a^{3}+\frac{76\!\cdots\!46}{44\!\cdots\!01}a^{2}+\frac{50\!\cdots\!77}{44\!\cdots\!01}a+\frac{77\!\cdots\!16}{44\!\cdots\!01}$, $\frac{78\!\cdots\!34}{41\!\cdots\!91}a^{26}-\frac{90\!\cdots\!71}{41\!\cdots\!91}a^{25}+\frac{30\!\cdots\!84}{59\!\cdots\!13}a^{24}+\frac{18\!\cdots\!32}{41\!\cdots\!91}a^{23}-\frac{22\!\cdots\!99}{41\!\cdots\!91}a^{22}-\frac{85\!\cdots\!38}{21\!\cdots\!89}a^{21}+\frac{12\!\cdots\!09}{41\!\cdots\!91}a^{20}+\frac{11\!\cdots\!67}{59\!\cdots\!13}a^{19}-\frac{35\!\cdots\!60}{41\!\cdots\!91}a^{18}-\frac{11\!\cdots\!37}{21\!\cdots\!89}a^{17}+\frac{40\!\cdots\!66}{31\!\cdots\!27}a^{16}+\frac{20\!\cdots\!30}{21\!\cdots\!89}a^{15}-\frac{18\!\cdots\!66}{21\!\cdots\!89}a^{14}-\frac{20\!\cdots\!83}{21\!\cdots\!89}a^{13}-\frac{26\!\cdots\!20}{21\!\cdots\!89}a^{12}+\frac{11\!\cdots\!19}{21\!\cdots\!89}a^{11}+\frac{98\!\cdots\!70}{21\!\cdots\!89}a^{10}-\frac{32\!\cdots\!67}{21\!\cdots\!89}a^{9}-\frac{24\!\cdots\!42}{11\!\cdots\!31}a^{8}+\frac{17\!\cdots\!96}{11\!\cdots\!31}a^{7}+\frac{42\!\cdots\!76}{11\!\cdots\!31}a^{6}+\frac{16\!\cdots\!57}{60\!\cdots\!49}a^{5}-\frac{14\!\cdots\!77}{60\!\cdots\!49}a^{4}-\frac{58\!\cdots\!74}{60\!\cdots\!49}a^{3}+\frac{12\!\cdots\!95}{31\!\cdots\!71}a^{2}+\frac{10\!\cdots\!93}{31\!\cdots\!71}a+\frac{16\!\cdots\!68}{31\!\cdots\!71}$, $\frac{38\!\cdots\!13}{41\!\cdots\!91}a^{26}+\frac{10\!\cdots\!48}{41\!\cdots\!91}a^{25}+\frac{80\!\cdots\!78}{41\!\cdots\!91}a^{24}-\frac{17\!\cdots\!33}{41\!\cdots\!91}a^{23}-\frac{68\!\cdots\!67}{41\!\cdots\!91}a^{22}+\frac{93\!\cdots\!16}{41\!\cdots\!91}a^{21}+\frac{45\!\cdots\!13}{59\!\cdots\!13}a^{20}-\frac{13\!\cdots\!51}{41\!\cdots\!91}a^{19}-\frac{84\!\cdots\!33}{41\!\cdots\!91}a^{18}-\frac{21\!\cdots\!13}{21\!\cdots\!89}a^{17}+\frac{71\!\cdots\!89}{21\!\cdots\!89}a^{16}+\frac{94\!\cdots\!99}{21\!\cdots\!89}a^{15}-\frac{64\!\cdots\!76}{21\!\cdots\!89}a^{14}-\frac{13\!\cdots\!78}{21\!\cdots\!89}a^{13}+\frac{28\!\cdots\!03}{21\!\cdots\!89}a^{12}+\frac{96\!\cdots\!12}{21\!\cdots\!89}a^{11}-\frac{28\!\cdots\!63}{21\!\cdots\!89}a^{10}-\frac{31\!\cdots\!17}{21\!\cdots\!89}a^{9}-\frac{95\!\cdots\!98}{11\!\cdots\!31}a^{8}+\frac{20\!\cdots\!43}{11\!\cdots\!31}a^{7}+\frac{24\!\cdots\!84}{11\!\cdots\!31}a^{6}-\frac{27\!\cdots\!75}{60\!\cdots\!49}a^{5}-\frac{93\!\cdots\!78}{60\!\cdots\!49}a^{4}-\frac{26\!\cdots\!91}{60\!\cdots\!49}a^{3}+\frac{95\!\cdots\!78}{31\!\cdots\!71}a^{2}+\frac{60\!\cdots\!10}{31\!\cdots\!71}a+\frac{91\!\cdots\!88}{31\!\cdots\!71}$, $\frac{29\!\cdots\!89}{59\!\cdots\!13}a^{26}+\frac{29\!\cdots\!70}{41\!\cdots\!91}a^{25}+\frac{44\!\cdots\!92}{41\!\cdots\!91}a^{24}-\frac{51\!\cdots\!45}{59\!\cdots\!13}a^{23}-\frac{38\!\cdots\!62}{41\!\cdots\!91}a^{22}+\frac{17\!\cdots\!74}{41\!\cdots\!91}a^{21}+\frac{18\!\cdots\!20}{41\!\cdots\!91}a^{20}+\frac{14\!\cdots\!02}{41\!\cdots\!91}a^{19}-\frac{25\!\cdots\!01}{21\!\cdots\!89}a^{18}-\frac{42\!\cdots\!55}{21\!\cdots\!89}a^{17}+\frac{39\!\cdots\!56}{21\!\cdots\!89}a^{16}+\frac{10\!\cdots\!78}{21\!\cdots\!89}a^{15}-\frac{31\!\cdots\!25}{21\!\cdots\!89}a^{14}-\frac{12\!\cdots\!05}{21\!\cdots\!89}a^{13}+\frac{90\!\cdots\!63}{21\!\cdots\!89}a^{12}+\frac{76\!\cdots\!08}{21\!\cdots\!89}a^{11}+\frac{50\!\cdots\!70}{31\!\cdots\!27}a^{10}-\frac{11\!\cdots\!73}{11\!\cdots\!31}a^{9}-\frac{14\!\cdots\!84}{11\!\cdots\!31}a^{8}+\frac{11\!\cdots\!38}{11\!\cdots\!31}a^{7}+\frac{27\!\cdots\!82}{11\!\cdots\!31}a^{6}+\frac{24\!\cdots\!52}{60\!\cdots\!49}a^{5}-\frac{49\!\cdots\!08}{31\!\cdots\!71}a^{4}-\frac{51\!\cdots\!28}{60\!\cdots\!49}a^{3}+\frac{75\!\cdots\!04}{31\!\cdots\!71}a^{2}+\frac{82\!\cdots\!61}{31\!\cdots\!71}a+\frac{15\!\cdots\!81}{31\!\cdots\!71}$, $\frac{22\!\cdots\!76}{59\!\cdots\!13}a^{26}-\frac{35\!\cdots\!84}{41\!\cdots\!91}a^{25}-\frac{47\!\cdots\!80}{59\!\cdots\!13}a^{24}+\frac{54\!\cdots\!20}{41\!\cdots\!91}a^{23}+\frac{28\!\cdots\!47}{41\!\cdots\!91}a^{22}-\frac{24\!\cdots\!79}{41\!\cdots\!91}a^{21}-\frac{13\!\cdots\!14}{41\!\cdots\!91}a^{20}-\frac{58\!\cdots\!08}{41\!\cdots\!91}a^{19}+\frac{35\!\cdots\!66}{41\!\cdots\!91}a^{18}+\frac{16\!\cdots\!48}{21\!\cdots\!89}a^{17}-\frac{15\!\cdots\!28}{11\!\cdots\!31}a^{16}-\frac{50\!\cdots\!59}{21\!\cdots\!89}a^{15}+\frac{26\!\cdots\!28}{21\!\cdots\!89}a^{14}+\frac{35\!\cdots\!45}{11\!\cdots\!31}a^{13}-\frac{15\!\cdots\!29}{31\!\cdots\!27}a^{12}-\frac{45\!\cdots\!22}{21\!\cdots\!89}a^{11}+\frac{48\!\cdots\!38}{31\!\cdots\!27}a^{10}+\frac{14\!\cdots\!37}{21\!\cdots\!89}a^{9}+\frac{55\!\cdots\!45}{11\!\cdots\!31}a^{8}-\frac{92\!\cdots\!44}{11\!\cdots\!31}a^{7}-\frac{17\!\cdots\!11}{16\!\cdots\!33}a^{6}+\frac{91\!\cdots\!24}{60\!\cdots\!49}a^{5}+\frac{46\!\cdots\!91}{60\!\cdots\!49}a^{4}+\frac{77\!\cdots\!12}{31\!\cdots\!71}a^{3}-\frac{45\!\cdots\!06}{31\!\cdots\!71}a^{2}-\frac{30\!\cdots\!33}{31\!\cdots\!71}a-\frac{48\!\cdots\!22}{31\!\cdots\!71}$, $\frac{20\!\cdots\!38}{21\!\cdots\!89}a^{26}-\frac{89\!\cdots\!24}{41\!\cdots\!91}a^{25}-\frac{80\!\cdots\!31}{41\!\cdots\!91}a^{24}+\frac{14\!\cdots\!38}{41\!\cdots\!91}a^{23}+\frac{68\!\cdots\!46}{41\!\cdots\!91}a^{22}-\frac{67\!\cdots\!04}{41\!\cdots\!91}a^{21}-\frac{31\!\cdots\!63}{41\!\cdots\!91}a^{20}+\frac{26\!\cdots\!43}{41\!\cdots\!91}a^{19}+\frac{85\!\cdots\!34}{41\!\cdots\!91}a^{18}+\frac{51\!\cdots\!22}{31\!\cdots\!27}a^{17}-\frac{19\!\cdots\!42}{60\!\cdots\!49}a^{16}-\frac{11\!\cdots\!63}{21\!\cdots\!89}a^{15}+\frac{63\!\cdots\!77}{21\!\cdots\!89}a^{14}+\frac{22\!\cdots\!83}{31\!\cdots\!27}a^{13}-\frac{26\!\cdots\!40}{21\!\cdots\!89}a^{12}-\frac{10\!\cdots\!89}{21\!\cdots\!89}a^{11}+\frac{10\!\cdots\!87}{21\!\cdots\!89}a^{10}+\frac{34\!\cdots\!21}{21\!\cdots\!89}a^{9}+\frac{12\!\cdots\!10}{11\!\cdots\!31}a^{8}-\frac{21\!\cdots\!90}{11\!\cdots\!31}a^{7}-\frac{42\!\cdots\!24}{16\!\cdots\!33}a^{6}+\frac{21\!\cdots\!34}{60\!\cdots\!49}a^{5}+\frac{11\!\cdots\!55}{60\!\cdots\!49}a^{4}+\frac{35\!\cdots\!86}{60\!\cdots\!49}a^{3}-\frac{10\!\cdots\!71}{31\!\cdots\!71}a^{2}-\frac{73\!\cdots\!93}{31\!\cdots\!71}a-\frac{11\!\cdots\!11}{31\!\cdots\!71}$, $\frac{45\!\cdots\!12}{41\!\cdots\!91}a^{26}+\frac{11\!\cdots\!45}{41\!\cdots\!91}a^{25}+\frac{13\!\cdots\!77}{59\!\cdots\!13}a^{24}-\frac{17\!\cdots\!27}{41\!\cdots\!91}a^{23}-\frac{81\!\cdots\!08}{41\!\cdots\!91}a^{22}+\frac{87\!\cdots\!18}{41\!\cdots\!91}a^{21}+\frac{37\!\cdots\!97}{41\!\cdots\!91}a^{20}-\frac{67\!\cdots\!45}{41\!\cdots\!91}a^{19}-\frac{10\!\cdots\!63}{41\!\cdots\!91}a^{18}-\frac{38\!\cdots\!99}{21\!\cdots\!89}a^{17}+\frac{85\!\cdots\!50}{21\!\cdots\!89}a^{16}+\frac{13\!\cdots\!67}{21\!\cdots\!89}a^{15}-\frac{76\!\cdots\!88}{21\!\cdots\!89}a^{14}-\frac{18\!\cdots\!39}{21\!\cdots\!89}a^{13}+\frac{32\!\cdots\!17}{21\!\cdots\!89}a^{12}+\frac{17\!\cdots\!32}{31\!\cdots\!27}a^{11}-\frac{21\!\cdots\!66}{21\!\cdots\!89}a^{10}-\frac{39\!\cdots\!56}{21\!\cdots\!89}a^{9}-\frac{13\!\cdots\!41}{11\!\cdots\!31}a^{8}+\frac{26\!\cdots\!85}{11\!\cdots\!31}a^{7}+\frac{17\!\cdots\!76}{60\!\cdots\!49}a^{6}-\frac{32\!\cdots\!89}{60\!\cdots\!49}a^{5}-\frac{12\!\cdots\!88}{60\!\cdots\!49}a^{4}-\frac{35\!\cdots\!02}{60\!\cdots\!49}a^{3}+\frac{12\!\cdots\!38}{31\!\cdots\!71}a^{2}+\frac{78\!\cdots\!66}{31\!\cdots\!71}a+\frac{16\!\cdots\!66}{45\!\cdots\!53}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2914941073381261000000 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{27}\cdot(2\pi)^{0}\cdot 2914941073381261000000 \cdot 1}{2\cdot\sqrt{383707689246443888440321132287382098639043931374214514299529}}\cr\approx \mathstrut & 0.315798029573530 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^27 - 216*x^25 - 126*x^24 + 18954*x^23 + 24975*x^22 - 875052*x^21 - 1892970*x^20 + 22692042*x^19 + 71110521*x^18 - 316638477*x^17 - 1432046169*x^16 + 1812081357*x^15 + 15499723005*x^14 + 5402467638*x^13 - 85210703568*x^12 - 119880614304*x^11 + 187324337502*x^10 + 524296119381*x^9 + 69677940285*x^8 - 774118036773*x^7 - 608211900027*x^6 + 298745384301*x^5 + 521853502770*x^4 + 104853930822*x^3 - 111313030545*x^2 - 61038316449*x - 8866910519)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^27 - 216*x^25 - 126*x^24 + 18954*x^23 + 24975*x^22 - 875052*x^21 - 1892970*x^20 + 22692042*x^19 + 71110521*x^18 - 316638477*x^17 - 1432046169*x^16 + 1812081357*x^15 + 15499723005*x^14 + 5402467638*x^13 - 85210703568*x^12 - 119880614304*x^11 + 187324337502*x^10 + 524296119381*x^9 + 69677940285*x^8 - 774118036773*x^7 - 608211900027*x^6 + 298745384301*x^5 + 521853502770*x^4 + 104853930822*x^3 - 111313030545*x^2 - 61038316449*x - 8866910519, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^27 - 216*x^25 - 126*x^24 + 18954*x^23 + 24975*x^22 - 875052*x^21 - 1892970*x^20 + 22692042*x^19 + 71110521*x^18 - 316638477*x^17 - 1432046169*x^16 + 1812081357*x^15 + 15499723005*x^14 + 5402467638*x^13 - 85210703568*x^12 - 119880614304*x^11 + 187324337502*x^10 + 524296119381*x^9 + 69677940285*x^8 - 774118036773*x^7 - 608211900027*x^6 + 298745384301*x^5 + 521853502770*x^4 + 104853930822*x^3 - 111313030545*x^2 - 61038316449*x - 8866910519);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 216*x^25 - 126*x^24 + 18954*x^23 + 24975*x^22 - 875052*x^21 - 1892970*x^20 + 22692042*x^19 + 71110521*x^18 - 316638477*x^17 - 1432046169*x^16 + 1812081357*x^15 + 15499723005*x^14 + 5402467638*x^13 - 85210703568*x^12 - 119880614304*x^11 + 187324337502*x^10 + 524296119381*x^9 + 69677940285*x^8 - 774118036773*x^7 - 608211900027*x^6 + 298745384301*x^5 + 521853502770*x^4 + 104853930822*x^3 - 111313030545*x^2 - 61038316449*x - 8866910519);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3^6.C_3^3:C_9$ (as 27T1470):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 177147
The 251 conjugacy class representatives for $C_3^6.C_3^3:C_9$
Character table for $C_3^6.C_3^3:C_9$

Intermediate fields

\(\Q(\zeta_{9})^+\), 9.9.139858796529.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 27 siblings: data not computed
Minimal sibling: 27.27.8156031539646242110766745600690995639746738537518609.7

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.9.0.1}{9} }^{3}$ R $27$ ${\href{/padicField/7.9.0.1}{9} }{,}\,{\href{/padicField/7.3.0.1}{3} }^{6}$ ${\href{/padicField/11.9.0.1}{9} }{,}\,{\href{/padicField/11.3.0.1}{3} }^{6}$ ${\href{/padicField/13.9.0.1}{9} }^{3}$ ${\href{/padicField/17.9.0.1}{9} }^{3}$ R ${\href{/padicField/23.9.0.1}{9} }^{3}$ $27$ ${\href{/padicField/31.9.0.1}{9} }{,}\,{\href{/padicField/31.3.0.1}{3} }^{6}$ ${\href{/padicField/37.9.0.1}{9} }{,}\,{\href{/padicField/37.3.0.1}{3} }^{4}{,}\,{\href{/padicField/37.1.0.1}{1} }^{6}$ $27$ ${\href{/padicField/43.9.0.1}{9} }^{3}$ $27$ ${\href{/padicField/53.9.0.1}{9} }{,}\,{\href{/padicField/53.3.0.1}{3} }^{6}$ $27$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display Deg $27$$27$$1$$82$
\(19\) Copy content Toggle raw display $\Q_{19}$$x + 17$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 17$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 17$$1$$1$$0$Trivial$[\ ]$
19.3.0.1$x^{3} + 4 x + 17$$1$$3$$0$$C_3$$[\ ]^{3}$
19.3.2.3$x^{3} + 38$$3$$1$$2$$C_3$$[\ ]_{3}$
19.9.8.2$x^{9} + 57$$9$$1$$8$$C_9$$[\ ]_{9}$
19.9.6.2$x^{9} + 981 x^{7} + 108 x^{6} + 316911 x^{5} + 20529 x^{4} + 34115982 x^{3} + 10990188 x^{2} + 130942880 x + 566550143$$3$$3$$6$$C_3^2$$[\ ]_{3}^{3}$