Normalized defining polynomial
\( x^{27} - 513 x^{25} + 116964 x^{23} - 15617943 x^{21} + 1354686795 x^{19} - 124146 x^{18} - 80025043581 x^{17} + 42457932 x^{16} + 3282297025608 x^{15} - 6050255310 x^{14} - 93545465229828 x^{13} + 464928508044 x^{12} + 1824136571981646 x^{11} - 20822155324542 x^{10} - 23533430642034312 x^{9} + 547782855461028 x^{8} + 189345054725982270 x^{7} - 8095013308479636 x^{6} - 856864467175196223 x^{5} + 59924124491342760 x^{4} + 1775016705261914199 x^{3} - 170783754800326866 x^{2} - 920607736797292131 x + 249008793852866527 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3463254175600113063839837232871102966170246194081956872095753304432278349849=3^{94}\cdot 19^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $627.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1539=3^{4}\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1539}(64,·)$, $\chi_{1539}(1,·)$, $\chi_{1539}(514,·)$, $\chi_{1539}(1027,·)$, $\chi_{1539}(1366,·)$, $\chi_{1539}(577,·)$, $\chi_{1539}(139,·)$, $\chi_{1539}(652,·)$, $\chi_{1539}(1165,·)$, $\chi_{1539}(340,·)$, $\chi_{1539}(853,·)$, $\chi_{1539}(214,·)$, $\chi_{1539}(727,·)$, $\chi_{1539}(1240,·)$, $\chi_{1539}(1090,·)$, $\chi_{1539}(358,·)$, $\chi_{1539}(871,·)$, $\chi_{1539}(1384,·)$, $\chi_{1539}(427,·)$, $\chi_{1539}(940,·)$, $\chi_{1539}(1453,·)$, $\chi_{1539}(175,·)$, $\chi_{1539}(688,·)$, $\chi_{1539}(1201,·)$, $\chi_{1539}(505,·)$, $\chi_{1539}(1018,·)$, $\chi_{1539}(1531,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{19} a^{9}$, $\frac{1}{323} a^{10} + \frac{6}{17} a^{8} + \frac{1}{17} a^{6} - \frac{8}{17} a^{4} + \frac{5}{17} a^{2} + \frac{4}{17}$, $\frac{1}{323} a^{11} - \frac{5}{323} a^{9} + \frac{1}{17} a^{7} - \frac{8}{17} a^{5} + \frac{5}{17} a^{3} + \frac{4}{17} a$, $\frac{1}{323} a^{12} - \frac{3}{17} a^{8} - \frac{3}{17} a^{6} - \frac{1}{17} a^{4} - \frac{5}{17} a^{2} + \frac{3}{17}$, $\frac{1}{323} a^{13} - \frac{6}{323} a^{9} - \frac{3}{17} a^{7} - \frac{1}{17} a^{5} - \frac{5}{17} a^{3} + \frac{3}{17} a$, $\frac{1}{104329} a^{14} - \frac{3}{5491} a^{13} + \frac{3}{5491} a^{12} - \frac{7}{5491} a^{11} + \frac{1}{5491} a^{10} + \frac{104}{5491} a^{9} - \frac{97}{289} a^{8} + \frac{2}{289} a^{7} + \frac{3}{289} a^{6} - \frac{511}{5491} a^{5} - \frac{29}{289} a^{4} - \frac{3}{289} a^{3} + \frac{32}{289} a^{2} + \frac{14}{289} a - \frac{94}{289}$, $\frac{1}{104329} a^{15} + \frac{2}{5491} a^{13} - \frac{6}{5491} a^{12} - \frac{7}{5491} a^{11} + \frac{8}{5491} a^{10} - \frac{46}{5491} a^{9} + \frac{134}{289} a^{8} - \frac{2}{289} a^{7} - \frac{1461}{5491} a^{6} + \frac{53}{289} a^{5} + \frac{27}{289} a^{4} + \frac{99}{289} a^{3} - \frac{100}{289} a^{2} - \frac{112}{289} a - \frac{122}{289}$, $\frac{1}{104329} a^{16} + \frac{6}{5491} a^{13} - \frac{2}{5491} a^{12} + \frac{2}{5491} a^{11} + \frac{1}{5491} a^{10} - \frac{12}{5491} a^{9} + \frac{80}{289} a^{8} - \frac{2259}{5491} a^{7} - \frac{44}{289} a^{6} - \frac{141}{289} a^{5} + \frac{113}{289} a^{4} + \frac{31}{289} a^{3} - \frac{53}{289} a^{2} - \frac{25}{289} a - \frac{66}{289}$, $\frac{1}{104329} a^{17} - \frac{7}{5491} a^{10} + \frac{2}{323} a^{9} - \frac{1138}{5491} a^{8} - \frac{3}{17} a^{7} + \frac{61}{289} a^{6} + \frac{5}{17} a^{5} + \frac{22}{289} a^{4} + \frac{1}{17} a^{3} + \frac{135}{289} a^{2} - \frac{98}{289} a + \frac{74}{289}$, $\frac{1}{4921540511596649} a^{18} - \frac{18}{259028447978771} a^{16} + \frac{135}{13633076209409} a^{14} - \frac{546}{717530326811} a^{12} + \frac{24453}{717530326811} a^{10} + \frac{23487485883}{896292207539} a^{9} - \frac{643302}{717530326811} a^{8} - \frac{22694276623}{47173274081} a^{7} + \frac{9506574}{717530326811} a^{6} + \frac{1047124596}{2482803899} a^{5} - \frac{70373340}{717530326811} a^{4} - \frac{588329902}{2482803899} a^{3} + \frac{200564019}{717530326811} a^{2} - \frac{619005797}{2482803899} a - \frac{302996942232}{717530326811}$, $\frac{1}{4921540511596649} a^{19} - \frac{18}{259028447978771} a^{17} + \frac{135}{13633076209409} a^{15} - \frac{546}{717530326811} a^{13} + \frac{24453}{717530326811} a^{11} + \frac{21901067363}{15236967528163} a^{10} - \frac{643302}{717530326811} a^{9} - \frac{244282880348}{801945659377} a^{8} + \frac{9506574}{717530326811} a^{7} - \frac{2061313060}{42207666283} a^{6} - \frac{70373340}{717530326811} a^{5} - \frac{19932823930}{42207666283} a^{4} + \frac{200564019}{717530326811} a^{3} + \frac{16787744340}{42207666283} a^{2} - \frac{302996942232}{717530326811} a + \frac{2}{17}$, $\frac{1}{4921540511596649} a^{20} - \frac{189}{13633076209409} a^{16} + \frac{1884}{717530326811} a^{14} - \frac{162279}{717530326811} a^{12} + \frac{21901067363}{15236967528163} a^{11} + \frac{7719624}{717530326811} a^{10} + \frac{20830529438}{801945659377} a^{9} - \frac{210502710}{717530326811} a^{8} + \frac{17754976997}{42207666283} a^{7} + \frac{3180874968}{717530326811} a^{6} - \frac{9854367538}{42207666283} a^{5} - \frac{1403948133}{42207666283} a^{4} + \frac{15058663035}{42207666283} a^{3} - \frac{234404047734}{717530326811} a^{2} - \frac{6282461905}{42207666283} a - \frac{300587182560}{717530326811}$, $\frac{1}{93509269720336331} a^{21} - \frac{189}{259028447978771} a^{17} + \frac{1884}{13633076209409} a^{15} - \frac{8541}{717530326811} a^{13} - \frac{213965303042}{289502383035097} a^{12} + \frac{406296}{717530326811} a^{11} + \frac{8416509943}{15236967528163} a^{10} - \frac{11079090}{717530326811} a^{9} - \frac{314940745469}{801945659377} a^{8} + \frac{167414472}{717530326811} a^{7} - \frac{1433368149}{42207666283} a^{6} - \frac{73892007}{42207666283} a^{5} + \frac{2229973996}{42207666283} a^{4} + \frac{5505838566754}{13633076209409} a^{3} - \frac{18102304851}{42207666283} a^{2} + \frac{286297654312}{717530326811} a + \frac{8}{17}$, $\frac{1}{93509269720336331} a^{22} - \frac{1518}{13633076209409} a^{16} + \frac{16974}{717530326811} a^{14} - \frac{213965303042}{289502383035097} a^{13} - \frac{1554390}{717530326811} a^{12} + \frac{8416509943}{15236967528163} a^{11} + \frac{76731633}{717530326811} a^{10} + \frac{20705412870}{801945659377} a^{9} - \frac{2142683010}{717530326811} a^{8} + \frac{16703179176}{42207666283} a^{7} + \frac{32881943115}{717530326811} a^{6} - \frac{146214431}{332343829} a^{5} + \frac{41431526582}{801945659377} a^{4} - \frac{15153825412}{42207666283} a^{3} + \frac{288992719730}{717530326811} a^{2} + \frac{7276865018}{42207666283} a - \frac{286044109636}{717530326811}$, $\frac{1}{132623542679464975902983} a^{23} - \frac{7307}{6980186456813946100157} a^{22} - \frac{23}{6980186456813946100157} a^{21} + \frac{11460}{367378234569155057903} a^{20} + \frac{230}{367378234569155057903} a^{19} + \frac{86}{1463658305056394653} a^{18} - \frac{69}{1017668239803753623} a^{17} + \frac{9953358}{1137393915074783461} a^{16} + \frac{276}{59862837635514919} a^{15} - \frac{3262441377629281}{6980186456813946100157} a^{14} + \frac{190513089538994442}{367378234569155057903} a^{13} + \frac{45552628296298868}{367378234569155057903} a^{12} - \frac{18015849341813642}{19335696556271318837} a^{11} - \frac{10900512143512378}{19335696556271318837} a^{10} - \frac{466927034003799256}{19335696556271318837} a^{9} + \frac{660916643477726}{8013135746486249} a^{8} - \frac{396122637930744426}{1017668239803753623} a^{7} + \frac{21267066702872347}{53561486305460717} a^{6} + \frac{1359888344001207893}{19335696556271318837} a^{5} + \frac{483750408333814846}{1017668239803753623} a^{4} + \frac{6628717431711308}{59862837635514919} a^{3} - \frac{25662566396204443}{53561486305460717} a^{2} - \frac{7818811594503938}{53561486305460717} a + \frac{13840120823380097}{53561486305460717}$, $\frac{1}{132623542679464975902983} a^{24} - \frac{24}{6980186456813946100157} a^{22} + \frac{10461}{6980186456813946100157} a^{21} + \frac{252}{367378234569155057903} a^{20} + \frac{60}{5174341331959930393} a^{19} - \frac{80}{1017668239803753623} a^{18} - \frac{2053809}{19335696556271318837} a^{17} + \frac{18}{3150675665027101} a^{16} - \frac{3248972368273417}{6980186456813946100157} a^{15} - \frac{864}{3150675665027101} a^{14} + \frac{48736043617173396}{367378234569155057903} a^{13} - \frac{335476550520986201}{367378234569155057903} a^{12} + \frac{6895725699072821}{19335696556271318837} a^{11} - \frac{21439857720584760}{19335696556271318837} a^{10} + \frac{665542376974565}{59862837635514919} a^{9} - \frac{69198561983464750}{1017668239803753623} a^{8} - \frac{184871749323154}{53561486305460717} a^{7} - \frac{9460407153144328301}{19335696556271318837} a^{6} + \frac{16954710008558046}{53561486305460717} a^{5} - \frac{62823318771283680}{1017668239803753623} a^{4} - \frac{468705783899551182}{1017668239803753623} a^{3} + \frac{24081995131594739}{53561486305460717} a^{2} + \frac{10474273006187475}{53561486305460717} a - \frac{14081330434424903}{53561486305460717}$, $\frac{1}{2519847310909834542156677} a^{25} - \frac{33381}{6980186456813946100157} a^{22} - \frac{300}{6980186456813946100157} a^{21} - \frac{19395}{367378234569155057903} a^{20} + \frac{4000}{367378234569155057903} a^{19} + \frac{31842}{367378234569155057903} a^{18} - \frac{1350}{1017668239803753623} a^{17} + \frac{130569014791592202}{132623542679464975902983} a^{16} + \frac{5760}{59862837635514919} a^{15} - \frac{29320576974813321}{6980186456813946100157} a^{14} + \frac{71641213727585988}{367378234569155057903} a^{13} - \frac{471546174124900292}{367378234569155057903} a^{12} + \frac{16527923431311818}{19335696556271318837} a^{11} - \frac{19968263386996534}{19335696556271318837} a^{10} + \frac{110496777479105000}{19335696556271318837} a^{9} + \frac{111130298165984986}{1017668239803753623} a^{8} + \frac{112521930968529663715}{367378234569155057903} a^{7} - \frac{5026286352257485}{53561486305460717} a^{6} + \frac{3515713422080962742}{19335696556271318837} a^{5} + \frac{377307808334068257}{1017668239803753623} a^{4} - \frac{218167473375897745}{1017668239803753623} a^{3} + \frac{1373697770540533}{3150675665027101} a^{2} + \frac{9309294992951102}{53561486305460717} a + \frac{6494847862009434}{53561486305460717}$, $\frac{1}{2519847310909834542156677} a^{26} - \frac{325}{6980186456813946100157} a^{22} - \frac{26602}{6980186456813946100157} a^{21} + \frac{4550}{367378234569155057903} a^{20} - \frac{28073}{367378234569155057903} a^{19} + \frac{10551}{367378234569155057903} a^{18} + \frac{7680116193538533}{7801384863497939758999} a^{17} - \frac{491514}{1137393915074783461} a^{16} - \frac{29242373197983654}{6980186456813946100157} a^{15} + \frac{4371780}{59862837635514919} a^{14} - \frac{256883036744247258}{367378234569155057903} a^{13} + \frac{325451868939448777}{367378234569155057903} a^{12} - \frac{945488097134398}{19335696556271318837} a^{11} + \frac{1804225447715853}{19335696556271318837} a^{10} + \frac{172993860239677697}{19335696556271318837} a^{9} - \frac{711645988550529090}{2892742004481535889} a^{8} - \frac{473804344395819598}{1017668239803753623} a^{7} + \frac{261428409989759749}{19335696556271318837} a^{6} - \frac{14006338704601158}{53561486305460717} a^{5} + \frac{2567442884285488}{14333355490193713} a^{4} + \frac{16103571645164588}{59862837635514919} a^{3} - \frac{195347946342993}{53561486305460717} a^{2} + \frac{543372572120461}{53561486305460717} a - \frac{24604977589704228}{53561486305460717}$
Class group and class number
$C_{9}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 158707282147788600000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 27 |
| The 27 conjugacy class representatives for $C_{27}$ |
| Character table for $C_{27}$ is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 9.9.1476349596018920529.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $27$ | R | $27$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{27}$ | R | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{3}$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{3}$ | $27$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $19$ | 19.9.8.5 | $x^{9} + 19456$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
| 19.9.8.5 | $x^{9} + 19456$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |
| 19.9.8.5 | $x^{9} + 19456$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |