Normalized defining polynomial
\( x^{27} - 513 x^{25} + 116964 x^{23} - 15617943 x^{21} + 1354686795 x^{19} - 768474 x^{18} - 80025043581 x^{17} + 262818108 x^{16} + 3282297025608 x^{15} - 37451580390 x^{14} - 93545465229828 x^{13} + 2877945888636 x^{12} + 1824136571981646 x^{11} - 128890862298198 x^{10} - 23533044355733718 x^{9} + 3390821146614132 x^{8} + 189278999768580696 x^{7} - 50108801388853284 x^{6} - 853099334603306505 x^{5} + 370935283008394440 x^{4} + 1695530573188686819 x^{3} - 1057165556573924154 x^{2} - 467536783979896065 x + 18638104434069437 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3463254175600113063839837232871102966170246194081956872095753304432278349849=3^{94}\cdot 19^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $627.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1539=3^{4}\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1539}(256,·)$, $\chi_{1539}(1,·)$, $\chi_{1539}(514,·)$, $\chi_{1539}(1027,·)$, $\chi_{1539}(4,·)$, $\chi_{1539}(517,·)$, $\chi_{1539}(1030,·)$, $\chi_{1539}(385,·)$, $\chi_{1539}(64,·)$, $\chi_{1539}(898,·)$, $\chi_{1539}(16,·)$, $\chi_{1539}(529,·)$, $\chi_{1539}(1042,·)$, $\chi_{1539}(1411,·)$, $\chi_{1539}(1537,·)$, $\chi_{1539}(481,·)$, $\chi_{1539}(994,·)$, $\chi_{1539}(1507,·)$, $\chi_{1539}(1090,·)$, $\chi_{1539}(1024,·)$, $\chi_{1539}(1282,·)$, $\chi_{1539}(577,·)$, $\chi_{1539}(505,·)$, $\chi_{1539}(1018,·)$, $\chi_{1539}(1531,·)$, $\chi_{1539}(769,·)$, $\chi_{1539}(511,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{19} a^{9}$, $\frac{1}{19} a^{10}$, $\frac{1}{19} a^{11}$, $\frac{1}{19} a^{12}$, $\frac{1}{19} a^{13}$, $\frac{1}{45847} a^{14} - \frac{1}{127} a^{13} - \frac{14}{2413} a^{12} - \frac{6}{2413} a^{11} - \frac{61}{2413} a^{10} + \frac{62}{2413} a^{9} - \frac{53}{127} a^{8} + \frac{29}{127} a^{7} - \frac{38}{127} a^{6} + \frac{689}{2413} a^{5} - \frac{7}{127} a^{4} - \frac{19}{127} a^{3} + \frac{29}{127} a^{2} + \frac{58}{127} a - \frac{27}{127}$, $\frac{1}{45847} a^{15} - \frac{15}{2413} a^{13} + \frac{20}{2413} a^{12} + \frac{59}{2413} a^{11} + \frac{12}{2413} a^{10} + \frac{39}{2413} a^{9} - \frac{54}{127} a^{8} + \frac{17}{127} a^{7} + \frac{651}{2413} a^{6} + \frac{3}{127} a^{5} - \frac{6}{127} a^{4} + \frac{28}{127} a^{3} - \frac{14}{127} a^{2} - \frac{44}{127} a + \frac{32}{127}$, $\frac{1}{45847} a^{16} - \frac{61}{2413} a^{13} + \frac{6}{2413} a^{12} - \frac{47}{2413} a^{11} + \frac{53}{2413} a^{10} + \frac{7}{2413} a^{9} + \frac{25}{127} a^{8} + \frac{841}{2413} a^{7} - \frac{32}{127} a^{6} + \frac{42}{127} a^{5} - \frac{62}{127} a^{4} + \frac{32}{127} a^{3} - \frac{34}{127} a^{2} + \frac{52}{127} a + \frac{52}{127}$, $\frac{1}{45847} a^{17} - \frac{44}{2413} a^{13} - \frac{17}{2413} a^{12} - \frac{43}{2413} a^{11} + \frac{47}{2413} a^{10} - \frac{3}{127} a^{9} - \frac{793}{2413} a^{8} + \frac{51}{127} a^{7} - \frac{58}{127} a^{6} + \frac{57}{127} a^{5} + \frac{47}{127} a^{4} + \frac{43}{127} a^{3} + \frac{8}{127} a^{2} - \frac{36}{127} a - \frac{51}{127}$, $\frac{1}{4027962508901263} a^{18} - \frac{18}{211998026784277} a^{16} + \frac{135}{11157790883383} a^{14} - \frac{546}{587252151757} a^{12} + \frac{24453}{587252151757} a^{10} + \frac{146702853891}{12470472163781} a^{9} - \frac{643302}{587252151757} a^{8} - \frac{7644404621}{656340640199} a^{7} + \frac{9506574}{587252151757} a^{6} - \frac{11611030358}{34544244221} a^{5} - \frac{70373340}{587252151757} a^{4} + \frac{10988541171}{34544244221} a^{3} + \frac{200564019}{587252151757} a^{2} - \frac{3909469499}{34544244221} a - \frac{262697078623}{587252151757}$, $\frac{1}{4027962508901263} a^{19} - \frac{18}{211998026784277} a^{17} + \frac{135}{11157790883383} a^{15} - \frac{546}{587252151757} a^{13} + \frac{24453}{587252151757} a^{11} + \frac{146702853891}{12470472163781} a^{10} - \frac{643302}{587252151757} a^{9} - \frac{7644404621}{656340640199} a^{8} + \frac{9506574}{587252151757} a^{7} - \frac{11611030358}{34544244221} a^{6} - \frac{70373340}{587252151757} a^{5} + \frac{10988541171}{34544244221} a^{4} + \frac{200564019}{587252151757} a^{3} - \frac{3909469499}{34544244221} a^{2} - \frac{262697078623}{587252151757} a$, $\frac{1}{4027962508901263} a^{20} - \frac{189}{11157790883383} a^{16} + \frac{1884}{587252151757} a^{14} - \frac{162279}{587252151757} a^{12} + \frac{146702853891}{12470472163781} a^{11} + \frac{7719624}{587252151757} a^{10} + \frac{7644404621}{656340640199} a^{9} - \frac{210502710}{587252151757} a^{8} - \frac{11033336652}{34544244221} a^{7} + \frac{3180874968}{587252151757} a^{6} + \frac{12604244150}{34544244221} a^{5} - \frac{1403948133}{34544244221} a^{4} - \frac{11151009106}{34544244221} a^{3} - \frac{194104184125}{587252151757} a^{2} + \frac{10186955961}{34544244221} a + \frac{7178329755}{587252151757}$, $\frac{1}{76531287669123997} a^{21} - \frac{189}{211998026784277} a^{17} + \frac{1884}{11157790883383} a^{15} - \frac{8541}{587252151757} a^{13} + \frac{6053768615682}{236938971111839} a^{12} + \frac{406296}{587252151757} a^{11} + \frac{7644404621}{12470472163781} a^{10} - \frac{11079090}{587252151757} a^{9} - \frac{114666069315}{656340640199} a^{8} + \frac{167414472}{587252151757} a^{7} - \frac{15699681781}{34544244221} a^{6} - \frac{73892007}{34544244221} a^{5} - \frac{2405013333}{34544244221} a^{4} - \frac{1955860639396}{11157790883383} a^{3} - \frac{1281962540}{34544244221} a^{2} - \frac{30530201158}{587252151757} a$, $\frac{1}{76531287669123997} a^{22} - \frac{1518}{11157790883383} a^{16} + \frac{16974}{587252151757} a^{14} + \frac{6053768615682}{236938971111839} a^{13} - \frac{1554390}{587252151757} a^{12} + \frac{7644404621}{12470472163781} a^{11} + \frac{76731633}{587252151757} a^{10} + \frac{595904395}{34544244221} a^{9} - \frac{2142683010}{587252151757} a^{8} - \frac{9633897868}{34544244221} a^{7} + \frac{32881943115}{587252151757} a^{6} - \frac{21356332}{272001923} a^{5} + \frac{4400427629127}{11157790883383} a^{4} + \frac{9042482139}{34544244221} a^{3} + \frac{102443039314}{587252151757} a^{2} - \frac{13941817183}{34544244221} a - \frac{218253613451}{587252151757}$, $\frac{1}{2092353236399110687264477} a^{23} + \frac{708132}{110123854547321615119183} a^{22} - \frac{23}{110123854547321615119183} a^{21} + \frac{249425}{5795992344595874479957} a^{20} + \frac{230}{5795992344595874479957} a^{19} + \frac{305366}{5795992344595874479957} a^{18} - \frac{69}{16055380455944250637} a^{17} - \frac{84960657}{1215347524553548853} a^{16} + \frac{276}{944434144467308861} a^{15} - \frac{994930275126887150}{110123854547321615119183} a^{14} + \frac{87992041105013266288}{5795992344595874479957} a^{13} + \frac{13943986718972461783}{5795992344595874479957} a^{12} + \frac{3399754716756007352}{305052228662940762103} a^{11} + \frac{3562231353586504843}{305052228662940762103} a^{10} + \frac{2271222023447959422}{305052228662940762103} a^{9} + \frac{527453251375004561}{16055380455944250637} a^{8} - \frac{878008617176754190}{16055380455944250637} a^{7} + \frac{257908433002833053}{845020023997065823} a^{6} - \frac{131852269564879256851}{305052228662940762103} a^{5} - \frac{1576283323625552751}{16055380455944250637} a^{4} + \frac{831592957818022646}{16055380455944250637} a^{3} - \frac{397360472415011542}{845020023997065823} a^{2} - \frac{203274456029173075}{845020023997065823} a + \frac{151402549605682586}{845020023997065823}$, $\frac{1}{2092353236399110687264477} a^{24} - \frac{24}{110123854547321615119183} a^{22} + \frac{504057}{110123854547321615119183} a^{21} + \frac{252}{5795992344595874479957} a^{20} - \frac{512624}{5795992344595874479957} a^{19} - \frac{80}{16055380455944250637} a^{18} - \frac{86039541}{305052228662940762103} a^{17} + \frac{18}{49707060235121519} a^{16} - \frac{996552195567354236}{110123854547321615119183} a^{15} - \frac{864}{49707060235121519} a^{14} + \frac{14948345908246521273}{5795992344595874479957} a^{13} + \frac{34012977350595023175}{5795992344595874479957} a^{12} + \frac{6642111036987670902}{305052228662940762103} a^{11} + \frac{2293881257784444747}{305052228662940762103} a^{10} + \frac{266926872609374590}{16055380455944250637} a^{9} + \frac{5078424781842917408}{16055380455944250637} a^{8} + \frac{254506730818809141}{845020023997065823} a^{7} + \frac{31896851075746367369}{305052228662940762103} a^{6} - \frac{38960183205624457}{845020023997065823} a^{5} + \frac{1379579673847801945}{16055380455944250637} a^{4} - \frac{4046077953846405896}{16055380455944250637} a^{3} - \frac{67561602348405099}{845020023997065823} a^{2} - \frac{77227262640017427}{845020023997065823} a - \frac{415208894066654311}{845020023997065823}$, $\frac{1}{39754711491583103058025063} a^{25} + \frac{436032}{110123854547321615119183} a^{22} - \frac{300}{110123854547321615119183} a^{21} - \frac{250938}{5795992344595874479957} a^{20} + \frac{4000}{5795992344595874479957} a^{19} + \frac{430888}{5795992344595874479957} a^{18} - \frac{1350}{16055380455944250637} a^{17} + \frac{11013291896369874447}{2092353236399110687264477} a^{16} + \frac{5760}{944434144467308861} a^{15} + \frac{639823419574487860}{110123854547321615119183} a^{14} - \frac{55238963463271119003}{5795992344595874479957} a^{13} - \frac{110344981161292598578}{5795992344595874479957} a^{12} + \frac{5392652958188637433}{305052228662940762103} a^{11} - \frac{4640321992722031223}{305052228662940762103} a^{10} + \frac{2994467674298436579}{305052228662940762103} a^{9} - \frac{7286800842311282124}{16055380455944250637} a^{8} + \frac{109830373834968556556}{5795992344595874479957} a^{7} + \frac{375362486713561852}{845020023997065823} a^{6} - \frac{74281730299832951130}{305052228662940762103} a^{5} - \frac{4067251182501160551}{16055380455944250637} a^{4} - \frac{7616341146514994365}{16055380455944250637} a^{3} + \frac{255853574536277187}{845020023997065823} a^{2} + \frac{111672844092851909}{845020023997065823} a - \frac{14340953980483158}{49707060235121519}$, $\frac{1}{39754711491583103058025063} a^{26} - \frac{325}{110123854547321615119183} a^{22} + \frac{155031}{110123854547321615119183} a^{21} + \frac{4550}{5795992344595874479957} a^{20} + \frac{126284}{5795992344595874479957} a^{19} - \frac{1625}{16055380455944250637} a^{18} + \frac{11013371811255164988}{2092353236399110687264477} a^{17} + \frac{390}{49707060235121519} a^{16} + \frac{638922219661505740}{110123854547321615119183} a^{15} - \frac{19500}{49707060235121519} a^{14} + \frac{17858736485553061118}{5795992344595874479957} a^{13} - \frac{138589963112015061855}{5795992344595874479957} a^{12} - \frac{1483742892784184106}{305052228662940762103} a^{11} + \frac{1767385150253878482}{305052228662940762103} a^{10} - \frac{294230848597057186}{16055380455944250637} a^{9} + \frac{2516356902950716991466}{5795992344595874479957} a^{8} + \frac{351199629824821621}{845020023997065823} a^{7} + \frac{64231439262231945974}{305052228662940762103} a^{6} + \frac{193380949458551702}{845020023997065823} a^{5} + \frac{3388896060729875192}{16055380455944250637} a^{4} - \frac{4851485990733935973}{16055380455944250637} a^{3} + \frac{2857852502502470}{11901690478831913} a^{2} - \frac{18774842757936924}{845020023997065823} a - \frac{100254343198116070}{845020023997065823}$
Class group and class number
Not computed
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 27 |
| The 27 conjugacy class representatives for $C_{27}$ |
| Character table for $C_{27}$ is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 9.9.1476349596018920529.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $27$ | R | $27$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{9}$ | R | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{3}$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{3}$ | $27$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $19$ | 19.9.8.7 | $x^{9} - 1245184$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
| 19.9.8.7 | $x^{9} - 1245184$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |
| 19.9.8.7 | $x^{9} - 1245184$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |