Normalized defining polynomial
\( x^{27} - 6 x^{26} - 101 x^{25} + 665 x^{24} + 4039 x^{23} - 30862 x^{22} - 78250 x^{21} + 781658 x^{20} + 631294 x^{19} - 11833279 x^{18} + 2312179 x^{17} + 110719275 x^{16} - 93223059 x^{15} - 644047317 x^{14} + 838327648 x^{13} + 2305955193 x^{12} - 3871097360 x^{11} - 4971409308 x^{10} + 10254915272 x^{9} + 6199663224 x^{8} - 15899447063 x^{7} - 4124731002 x^{6} + 13978784663 x^{5} + 1237075384 x^{4} - 6246677485 x^{3} - 134762902 x^{2} + 1023554967 x + 16988281 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3424497960405311916385247304908867275520984000621827548961=19^{24}\cdot 31^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $135.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(589=19\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{589}(1,·)$, $\chi_{589}(5,·)$, $\chi_{589}(397,·)$, $\chi_{589}(273,·)$, $\chi_{589}(404,·)$, $\chi_{589}(149,·)$, $\chi_{589}(87,·)$, $\chi_{589}(408,·)$, $\chi_{589}(25,·)$, $\chi_{589}(346,·)$, $\chi_{589}(156,·)$, $\chi_{589}(218,·)$, $\chi_{589}(315,·)$, $\chi_{589}(36,·)$, $\chi_{589}(552,·)$, $\chi_{589}(63,·)$, $\chi_{589}(366,·)$, $\chi_{589}(125,·)$, $\chi_{589}(435,·)$, $\chi_{589}(180,·)$, $\chi_{589}(501,·)$, $\chi_{589}(118,·)$, $\chi_{589}(311,·)$, $\chi_{589}(377,·)$, $\chi_{589}(187,·)$, $\chi_{589}(253,·)$, $\chi_{589}(191,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{17} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{17} - \frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{20} - \frac{1}{2} a^{17} - \frac{1}{2} a^{16} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{21} - \frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{22} - \frac{1}{2} a^{15} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{23} - \frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{24} - \frac{1}{2} a^{17} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{25} - \frac{1}{2} a^{17} - \frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{14293955033054146479807063760033550954790993215344444421029667345358185060124220784665880962412290141305146062} a^{26} - \frac{1852116635055632806352788650687112785902163941305169454084341983968382245713239058556801192494358193978865487}{14293955033054146479807063760033550954790993215344444421029667345358185060124220784665880962412290141305146062} a^{25} + \frac{552476144181079465235229575362225599109944754367184822392440613640946588018970665348450082199097441062369326}{7146977516527073239903531880016775477395496607672222210514833672679092530062110392332940481206145070652573031} a^{24} - \frac{811442244663267085317848834129392639537074666121377624918106735697115826796474594795326580278354335577244169}{7146977516527073239903531880016775477395496607672222210514833672679092530062110392332940481206145070652573031} a^{23} + \frac{3538229970736831282870644654234023971218047605471461427596359561913627944852397025580670687157188196178567939}{14293955033054146479807063760033550954790993215344444421029667345358185060124220784665880962412290141305146062} a^{22} + \frac{1443291477468143512386362234378552615647685800206685650805579246328352707797802189491204039199624465013188959}{7146977516527073239903531880016775477395496607672222210514833672679092530062110392332940481206145070652573031} a^{21} - \frac{2800989538614700711558584779331363874281704905530872679883906911123721865446413073978334674793378574895689275}{14293955033054146479807063760033550954790993215344444421029667345358185060124220784665880962412290141305146062} a^{20} + \frac{1387152566618333728680741460004945027642062346181161836755615692724751299159793481766889981126971856664787855}{14293955033054146479807063760033550954790993215344444421029667345358185060124220784665880962412290141305146062} a^{19} + \frac{195343297845232707726920804095763757399447718354665384307405195854273035294626541520417575778385970532372724}{7146977516527073239903531880016775477395496607672222210514833672679092530062110392332940481206145070652573031} a^{18} + \frac{1599691601991489260133513143132662196819332244903437479053771412650852068039908902267629339127142655165185695}{7146977516527073239903531880016775477395496607672222210514833672679092530062110392332940481206145070652573031} a^{17} + \frac{3491907434754594345616473362726576967707164755229681161434064993421911579557342301207107480937946999010242185}{7146977516527073239903531880016775477395496607672222210514833672679092530062110392332940481206145070652573031} a^{16} + \frac{6321662647010084619655928754036545594840398291083533732472371021680919563557460651955992374312107878288607161}{14293955033054146479807063760033550954790993215344444421029667345358185060124220784665880962412290141305146062} a^{15} + \frac{3533567726866662995256127419289403400465540224764599894679044357299037188961943705558820302001546842317292363}{7146977516527073239903531880016775477395496607672222210514833672679092530062110392332940481206145070652573031} a^{14} - \frac{3242181828496091487517296023546286390923791867238198686872984913197702352275155107143554821843100941715560612}{7146977516527073239903531880016775477395496607672222210514833672679092530062110392332940481206145070652573031} a^{13} + \frac{3278621976588710291054680121866581281057359370560740509771792165667339768511416451333007940108056872616488089}{14293955033054146479807063760033550954790993215344444421029667345358185060124220784665880962412290141305146062} a^{12} + \frac{441882611054543217338360469007227997303687936144299750911257193359117959727670346245391915716137987361835269}{7146977516527073239903531880016775477395496607672222210514833672679092530062110392332940481206145070652573031} a^{11} - \frac{4150501714191356290148588545523384607469558757989615659258435873868682406856296812433968306600711190412892379}{14293955033054146479807063760033550954790993215344444421029667345358185060124220784665880962412290141305146062} a^{10} - \frac{4332214659519451950732157602284046116501660243994223279626386484579764923380280898352254648279382991602755309}{14293955033054146479807063760033550954790993215344444421029667345358185060124220784665880962412290141305146062} a^{9} + \frac{124965205737382932388298537379676696004760051468119392093989968438242603118435706846559227058732478298514111}{14293955033054146479807063760033550954790993215344444421029667345358185060124220784665880962412290141305146062} a^{8} + \frac{2015323695401583782464542882464374679966836041916683294117356517620964339935415471212988860628951188199565858}{7146977516527073239903531880016775477395496607672222210514833672679092530062110392332940481206145070652573031} a^{7} - \frac{1201005470262809622852730479675319742610160608169004976809179462213387575751931974859434727987076139105561095}{14293955033054146479807063760033550954790993215344444421029667345358185060124220784665880962412290141305146062} a^{6} + \frac{2462868587898647116676927001358774399461229364298292277448479071911441248439891676098599454056604950198247532}{7146977516527073239903531880016775477395496607672222210514833672679092530062110392332940481206145070652573031} a^{5} - \frac{494757569120943151052284888272088830219793310143656910535193814361455376675076199799297497906114619310106902}{7146977516527073239903531880016775477395496607672222210514833672679092530062110392332940481206145070652573031} a^{4} - \frac{5307517050156863123014869907424245842766436166926757464970588156914946147445730280779428683242850204834755811}{14293955033054146479807063760033550954790993215344444421029667345358185060124220784665880962412290141305146062} a^{3} - \frac{331178003415630378680885706534146548218663528037847618130133454572627430764478045645161435213349568887687935}{7146977516527073239903531880016775477395496607672222210514833672679092530062110392332940481206145070652573031} a^{2} - \frac{1288885857467645978259530428116290990542328095925242092147091614115877536115265651696234663330714012252110893}{7146977516527073239903531880016775477395496607672222210514833672679092530062110392332940481206145070652573031} a - \frac{531641862288105815373518081981543414376809262508645036405581204991080021827167577524760286864326406669394332}{7146977516527073239903531880016775477395496607672222210514833672679092530062110392332940481206145070652573031}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 104291368915896570000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_9$ (as 27T2):
| An abelian group of order 27 |
| The 27 conjugacy class representatives for $C_3\times C_9$ |
| Character table for $C_3\times C_9$ is not computed |
Intermediate fields
| 3.3.961.1, 3.3.361.1, 3.3.346921.1, 3.3.346921.2, 9.9.41753392563387961.1, \(\Q(\zeta_{19})^+\), 9.9.15072974715383053921.2, 9.9.15072974715383053921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{3}$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{3}$ | R | ${\href{/LocalNumberField/37.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 19 | Data not computed | ||||||
| $31$ | 31.9.6.1 | $x^{9} + 837 x^{6} + 232562 x^{3} + 21717639$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 31.9.6.1 | $x^{9} + 837 x^{6} + 232562 x^{3} + 21717639$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 31.9.6.1 | $x^{9} + 837 x^{6} + 232562 x^{3} + 21717639$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |