Normalized defining polynomial
\( x^{27} - x^{26} - 78 x^{25} + 175 x^{24} + 2388 x^{23} - 8354 x^{22} - 33013 x^{21} + 180016 x^{20} + 127774 x^{19} - 1968453 x^{18} + 1782518 x^{17} + 10489594 x^{16} - 23282154 x^{15} - 17166283 x^{14} + 103371060 x^{13} - 63556949 x^{12} - 176991137 x^{11} + 284942103 x^{10} + 20494295 x^{9} - 355135692 x^{8} + 239709074 x^{7} + 92044084 x^{6} - 184127684 x^{5} + 70412054 x^{4} + 8685910 x^{3} - 12922671 x^{2} + 3203525 x - 255583 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3287590482487420232312619225433719761322768037503974231209=163^{26}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $134.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $163$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(163\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{163}(64,·)$, $\chi_{163}(1,·)$, $\chi_{163}(126,·)$, $\chi_{163}(132,·)$, $\chi_{163}(133,·)$, $\chi_{163}(6,·)$, $\chi_{163}(135,·)$, $\chi_{163}(136,·)$, $\chi_{163}(140,·)$, $\chi_{163}(77,·)$, $\chi_{163}(146,·)$, $\chi_{163}(21,·)$, $\chi_{163}(22,·)$, $\chi_{163}(25,·)$, $\chi_{163}(155,·)$, $\chi_{163}(150,·)$, $\chi_{163}(36,·)$, $\chi_{163}(38,·)$, $\chi_{163}(40,·)$, $\chi_{163}(104,·)$, $\chi_{163}(115,·)$, $\chi_{163}(158,·)$, $\chi_{163}(58,·)$, $\chi_{163}(65,·)$, $\chi_{163}(61,·)$, $\chi_{163}(85,·)$, $\chi_{163}(53,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{59} a^{20} - \frac{28}{59} a^{19} - \frac{29}{59} a^{18} - \frac{10}{59} a^{17} - \frac{8}{59} a^{16} - \frac{9}{59} a^{15} - \frac{19}{59} a^{14} - \frac{5}{59} a^{13} + \frac{15}{59} a^{12} - \frac{12}{59} a^{11} + \frac{15}{59} a^{10} - \frac{26}{59} a^{9} + \frac{23}{59} a^{8} + \frac{26}{59} a^{7} + \frac{24}{59} a^{6} - \frac{9}{59} a^{5} - \frac{20}{59} a^{4} - \frac{4}{59} a^{3} - \frac{24}{59} a^{2} + \frac{18}{59} a + \frac{22}{59}$, $\frac{1}{59} a^{21} + \frac{13}{59} a^{19} + \frac{4}{59} a^{18} + \frac{7}{59} a^{17} + \frac{3}{59} a^{16} + \frac{24}{59} a^{15} - \frac{6}{59} a^{14} - \frac{7}{59} a^{13} - \frac{5}{59} a^{12} - \frac{26}{59} a^{11} - \frac{19}{59} a^{10} + \frac{3}{59} a^{9} + \frac{21}{59} a^{8} - \frac{15}{59} a^{7} + \frac{14}{59} a^{6} + \frac{23}{59} a^{5} + \frac{26}{59} a^{4} - \frac{18}{59} a^{3} - \frac{5}{59} a^{2} - \frac{5}{59} a + \frac{26}{59}$, $\frac{1}{59} a^{22} + \frac{14}{59} a^{19} - \frac{29}{59} a^{18} + \frac{15}{59} a^{17} + \frac{10}{59} a^{16} - \frac{7}{59} a^{15} + \frac{4}{59} a^{14} + \frac{1}{59} a^{13} + \frac{15}{59} a^{12} + \frac{19}{59} a^{11} - \frac{15}{59} a^{10} + \frac{5}{59} a^{9} - \frac{19}{59} a^{8} - \frac{29}{59} a^{7} + \frac{6}{59} a^{6} + \frac{25}{59} a^{5} + \frac{6}{59} a^{4} - \frac{12}{59} a^{3} + \frac{12}{59} a^{2} + \frac{28}{59} a + \frac{9}{59}$, $\frac{1}{59} a^{23} + \frac{9}{59} a^{19} + \frac{8}{59} a^{18} - \frac{27}{59} a^{17} - \frac{13}{59} a^{16} + \frac{12}{59} a^{15} - \frac{28}{59} a^{14} + \frac{26}{59} a^{13} - \frac{14}{59} a^{12} - \frac{24}{59} a^{11} - \frac{28}{59} a^{10} - \frac{9}{59} a^{9} + \frac{3}{59} a^{8} - \frac{4}{59} a^{7} - \frac{16}{59} a^{6} + \frac{14}{59} a^{5} - \frac{27}{59} a^{4} + \frac{9}{59} a^{3} + \frac{10}{59} a^{2} - \frac{7}{59} a - \frac{13}{59}$, $\frac{1}{59} a^{24} + \frac{24}{59} a^{19} - \frac{2}{59} a^{18} + \frac{18}{59} a^{17} + \frac{25}{59} a^{16} - \frac{6}{59} a^{15} + \frac{20}{59} a^{14} - \frac{28}{59} a^{13} + \frac{18}{59} a^{12} + \frac{21}{59} a^{11} - \frac{26}{59} a^{10} + \frac{1}{59} a^{9} + \frac{25}{59} a^{8} - \frac{14}{59} a^{7} - \frac{25}{59} a^{6} - \frac{5}{59} a^{5} + \frac{12}{59} a^{4} - \frac{13}{59} a^{3} - \frac{27}{59} a^{2} + \frac{2}{59} a - \frac{21}{59}$, $\frac{1}{227327} a^{25} - \frac{1104}{227327} a^{24} + \frac{1582}{227327} a^{23} - \frac{1862}{227327} a^{22} - \frac{398}{227327} a^{21} - \frac{729}{227327} a^{20} - \frac{94044}{227327} a^{19} + \frac{21924}{227327} a^{18} + \frac{75559}{227327} a^{17} + \frac{39341}{227327} a^{16} + \frac{18010}{227327} a^{15} + \frac{75534}{227327} a^{14} + \frac{88492}{227327} a^{13} - \frac{63363}{227327} a^{12} + \frac{285}{3853} a^{11} - \frac{19124}{227327} a^{10} + \frac{51813}{227327} a^{9} - \frac{67329}{227327} a^{8} + \frac{83713}{227327} a^{7} - \frac{102212}{227327} a^{6} + \frac{61825}{227327} a^{5} - \frac{59603}{227327} a^{4} + \frac{69992}{227327} a^{3} - \frac{96423}{227327} a^{2} - \frac{53580}{227327} a + \frac{43906}{227327}$, $\frac{1}{34265140496558977978967442901569483958672369} a^{26} - \frac{48634750496464743306265612644136739809}{34265140496558977978967442901569483958672369} a^{25} - \frac{18630366978569424307585258185664337190934}{34265140496558977978967442901569483958672369} a^{24} + \frac{208776264025912577388849426239004810174454}{34265140496558977978967442901569483958672369} a^{23} + \frac{251213271145924443133769985072745611463068}{34265140496558977978967442901569483958672369} a^{22} - \frac{114086934558265944751039035575932182712457}{34265140496558977978967442901569483958672369} a^{21} - \frac{164794141636143917303426701784305720891216}{34265140496558977978967442901569483958672369} a^{20} + \frac{15673373829892194490944114145684009055447532}{34265140496558977978967442901569483958672369} a^{19} + \frac{7857094007526767389616448444362546469219141}{34265140496558977978967442901569483958672369} a^{18} - \frac{13825883238755905262003953190130254603677827}{34265140496558977978967442901569483958672369} a^{17} - \frac{11985028235402338722816826269294269662411608}{34265140496558977978967442901569483958672369} a^{16} + \frac{12419597719884502540394099396199041575733415}{34265140496558977978967442901569483958672369} a^{15} - \frac{2286147866538140453745429635693253980660385}{34265140496558977978967442901569483958672369} a^{14} - \frac{2701418896698492872180823241905269426857639}{34265140496558977978967442901569483958672369} a^{13} + \frac{10272452527282782038680158964489229149301241}{34265140496558977978967442901569483958672369} a^{12} - \frac{13109645274714049918870375848845748907016560}{34265140496558977978967442901569483958672369} a^{11} + \frac{754446553536329102330000616177530165214279}{34265140496558977978967442901569483958672369} a^{10} - \frac{13662372455784657483289454263977895794808691}{34265140496558977978967442901569483958672369} a^{9} - \frac{8762716107734221019685072110557033716672448}{34265140496558977978967442901569483958672369} a^{8} - \frac{371671395969676686786310006242595044710416}{34265140496558977978967442901569483958672369} a^{7} - \frac{7060007312119239883509840827006537104659359}{34265140496558977978967442901569483958672369} a^{6} + \frac{10356969344509707200830356344198423675995796}{34265140496558977978967442901569483958672369} a^{5} + \frac{7498214327597505462743251878050233752944096}{34265140496558977978967442901569483958672369} a^{4} + \frac{15732024470331421174106885585166957330331324}{34265140496558977978967442901569483958672369} a^{3} - \frac{13931904987758959825195254234408136750604739}{34265140496558977978967442901569483958672369} a^{2} - \frac{11564990017577628014837030874168220392783569}{34265140496558977978967442901569483958672369} a + \frac{1203508288274670812003510567057049098214}{79501486070902501111293371001321308488799}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36699744145500324000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 27 |
| The 27 conjugacy class representatives for $C_{27}$ |
| Character table for $C_{27}$ is not computed |
Intermediate fields
| 3.3.26569.1, 9.9.498311414318121121.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $27$ | $27$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{3}$ | $27$ | $27$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{3}$ | $27$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{9}$ | $27$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{3}$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{27}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 163 | Data not computed | ||||||