Normalized defining polynomial
\( x^{27} - 9 x^{26} - 45 x^{25} + 636 x^{24} + 27 x^{23} - 17460 x^{22} + 31872 x^{21} + 229473 x^{20} - 738450 x^{19} - 1345159 x^{18} + 7506369 x^{17} + 647631 x^{16} - 38801514 x^{15} + 30109320 x^{14} + 100880532 x^{13} - 138866430 x^{12} - 120638421 x^{11} + 261338922 x^{10} + 44503222 x^{9} - 240759207 x^{8} + 22047264 x^{7} + 115889073 x^{6} - 21421602 x^{5} - 28758384 x^{4} + 5399355 x^{3} + 3255948 x^{2} - 411264 x - 105461 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3217863581710817038235175421508758764893959268723195889=3^{66}\cdot 19^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $104.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(513=3^{3}\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{513}(448,·)$, $\chi_{513}(1,·)$, $\chi_{513}(235,·)$, $\chi_{513}(7,·)$, $\chi_{513}(64,·)$, $\chi_{513}(457,·)$, $\chi_{513}(334,·)$, $\chi_{513}(463,·)$, $\chi_{513}(400,·)$, $\chi_{513}(277,·)$, $\chi_{513}(406,·)$, $\chi_{513}(343,·)$, $\chi_{513}(220,·)$, $\chi_{513}(349,·)$, $\chi_{513}(286,·)$, $\chi_{513}(163,·)$, $\chi_{513}(292,·)$, $\chi_{513}(229,·)$, $\chi_{513}(106,·)$, $\chi_{513}(391,·)$, $\chi_{513}(172,·)$, $\chi_{513}(49,·)$, $\chi_{513}(178,·)$, $\chi_{513}(115,·)$, $\chi_{513}(121,·)$, $\chi_{513}(505,·)$, $\chi_{513}(58,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{17} a^{24} - \frac{8}{17} a^{23} - \frac{2}{17} a^{22} + \frac{1}{17} a^{21} - \frac{8}{17} a^{20} - \frac{1}{17} a^{19} - \frac{8}{17} a^{18} - \frac{3}{17} a^{17} - \frac{3}{17} a^{16} - \frac{5}{17} a^{15} - \frac{8}{17} a^{14} + \frac{3}{17} a^{13} + \frac{6}{17} a^{12} - \frac{5}{17} a^{11} - \frac{1}{17} a^{10} + \frac{8}{17} a^{8} + \frac{8}{17} a^{7} + \frac{1}{17} a^{6} - \frac{2}{17} a^{5} - \frac{2}{17} a^{4} - \frac{1}{17} a^{3} + \frac{3}{17} a^{2} + \frac{6}{17}$, $\frac{1}{2771} a^{25} + \frac{6}{2771} a^{24} + \frac{651}{2771} a^{23} - \frac{1285}{2771} a^{22} - \frac{946}{2771} a^{21} - \frac{1065}{2771} a^{20} + \frac{896}{2771} a^{19} - \frac{30}{2771} a^{18} - \frac{487}{2771} a^{17} - \frac{1118}{2771} a^{16} - \frac{180}{2771} a^{15} - \frac{466}{2771} a^{14} + \frac{133}{2771} a^{13} - \frac{244}{2771} a^{12} - \frac{3}{2771} a^{11} + \frac{700}{2771} a^{10} - \frac{774}{2771} a^{9} - \frac{1223}{2771} a^{8} + \frac{1269}{2771} a^{7} - \frac{396}{2771} a^{6} - \frac{1186}{2771} a^{5} - \frac{1219}{2771} a^{4} + \frac{1247}{2771} a^{3} - \frac{332}{2771} a^{2} - \frac{96}{2771} a + \frac{5}{17}$, $\frac{1}{1815103292283737849866999950205767214780018750059437023610737552314421366890346133} a^{26} - \frac{21652408514035241556965620353659214046965672934874425142775794706505711538531}{1815103292283737849866999950205767214780018750059437023610737552314421366890346133} a^{25} - \frac{15733136826991925562975680426309417495232430443878145180986688122971367677880194}{1815103292283737849866999950205767214780018750059437023610737552314421366890346133} a^{24} + \frac{444978875302578699483951811629755046717289771279486048448327686237747112549544073}{1815103292283737849866999950205767214780018750059437023610737552314421366890346133} a^{23} + \frac{2757111758684672328793457393206491866734843804200497276623106828453754016623622}{106770781899043402933352938247398071457648161768202177859455150136142433346490949} a^{22} + \frac{482648774689029301109510294500409246249046178416268149466850047379818979484284627}{1815103292283737849866999950205767214780018750059437023610737552314421366890346133} a^{21} + \frac{162099145332215271913049690936185827769057198819749234741740163887021263321932590}{1815103292283737849866999950205767214780018750059437023610737552314421366890346133} a^{20} - \frac{261376383146347838232970393110641415002981940698988630663053244362681834429029578}{1815103292283737849866999950205767214780018750059437023610737552314421366890346133} a^{19} + \frac{197478763819534019758629934074390755110716112894171980903172663219247444615538935}{1815103292283737849866999950205767214780018750059437023610737552314421366890346133} a^{18} + \frac{727321625793393487545636474356998240645492676182584835023157151171352280562014404}{1815103292283737849866999950205767214780018750059437023610737552314421366890346133} a^{17} + \frac{311104180907471523254061562005803487192393909841662727196948624628672591555117704}{1815103292283737849866999950205767214780018750059437023610737552314421366890346133} a^{16} - \frac{422755160098614679812291806476880718897722459900741850270461895406489192955347829}{1815103292283737849866999950205767214780018750059437023610737552314421366890346133} a^{15} - \frac{41899619706448175343796363978400153015278116509704045073722149220184465174072190}{106770781899043402933352938247398071457648161768202177859455150136142433346490949} a^{14} + \frac{892225577009644792399706193010286837442906625363639843403224643041166241421164303}{1815103292283737849866999950205767214780018750059437023610737552314421366890346133} a^{13} - \frac{631288385677401312466719386336753913336371373403525554115875762116200297546176620}{1815103292283737849866999950205767214780018750059437023610737552314421366890346133} a^{12} - \frac{498304805663822692048679676935837937001551008720889902576102150530975346714751889}{1815103292283737849866999950205767214780018750059437023610737552314421366890346133} a^{11} - \frac{36283759661216183297433863140763380378993561009446195115868232790125845630594195}{1815103292283737849866999950205767214780018750059437023610737552314421366890346133} a^{10} - \frac{737968088908223746854220159530891550619810032452650705783711770485820661948871934}{1815103292283737849866999950205767214780018750059437023610737552314421366890346133} a^{9} + \frac{26160612885372726543391817200967469172862712382051830194591006838247810458033193}{106770781899043402933352938247398071457648161768202177859455150136142433346490949} a^{8} - \frac{63248929067739711229662991420237931327354551907156559550795923987869792284053715}{1815103292283737849866999950205767214780018750059437023610737552314421366890346133} a^{7} - \frac{93504532177285643512834113527161886626501133012363990594964120815839195015727545}{1815103292283737849866999950205767214780018750059437023610737552314421366890346133} a^{6} + \frac{26527043932765964812630875504672580424787294351336449275504163157805317537243032}{1815103292283737849866999950205767214780018750059437023610737552314421366890346133} a^{5} - \frac{597941550456394281572664823557293968749793374490314126112323441008375481984148646}{1815103292283737849866999950205767214780018750059437023610737552314421366890346133} a^{4} + \frac{656168800078360871881260838425812897169235426431420903580824794049824126491911}{16963582170876054671654205142109973969906717290275112370193808900134779129816319} a^{3} + \frac{14780707778370620071293025657751785088471241555466008881880644207968202381812515}{106770781899043402933352938247398071457648161768202177859455150136142433346490949} a^{2} + \frac{630570139498402452493141981705701466538389343068949222216270460318372978959702614}{1815103292283737849866999950205767214780018750059437023610737552314421366890346133} a - \frac{3314452848789428718608812866575118627074824728641880088912210217783601329843078}{11135603020145630980779140798808387820736311350057895850372623020333873416505191}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4236617885729581600 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_9$ (as 27T2):
| An abelian group of order 27 |
| The 27 conjugacy class representatives for $C_3\times C_9$ |
| Character table for $C_3\times C_9$ is not computed |
Intermediate fields
| 3.3.29241.2, \(\Q(\zeta_{9})^+\), 3.3.361.1, 3.3.29241.1, 9.9.25002110044521.1, 9.9.1476349596018920529.1, \(\Q(\zeta_{27})^+\), 9.9.1476349596018920529.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{3}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{9}$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $19$ | 19.9.6.2 | $x^{9} + 228 x^{6} + 16967 x^{3} + 438976$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 19.9.6.2 | $x^{9} + 228 x^{6} + 16967 x^{3} + 438976$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 19.9.6.2 | $x^{9} + 228 x^{6} + 16967 x^{3} + 438976$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |