Properties

Label 27.27.3063651216...3609.2
Degree $27$
Signature $[27, 0]$
Discriminant $3^{94}\cdot 37^{24}$
Root discriminant $1135.13$
Ramified primes $3, 37$
Class number $9$ (GRH)
Class group $[9]$ (GRH)
Galois group $C_{27}$ (as 27T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![46181559728398496293, 1052417297711836222461, -4706219488221297420642, 4704159643094157231339, 847967475355188724440, -1294713215954782474563, -58822969011125704308, 148376945318831526852, 2044041394209001308, -9477657404647124790, -39898705892968494, 377261368227838926, 457479019247796, -9934810805722716, -3057106603230, 179005600103112, 11016600372, -2241127346283, -16541442, 19481903595, 0, -115336881, 0, 443556, 0, -999, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^27 - 999*x^25 + 443556*x^23 - 115336881*x^21 + 19481903595*x^19 - 16541442*x^18 - 2241127346283*x^17 + 11016600372*x^16 + 179005600103112*x^15 - 3057106603230*x^14 - 9934810805722716*x^13 + 457479019247796*x^12 + 377261368227838926*x^11 - 39898705892968494*x^10 - 9477657404647124790*x^9 + 2044041394209001308*x^8 + 148376945318831526852*x^7 - 58822969011125704308*x^6 - 1294713215954782474563*x^5 + 847967475355188724440*x^4 + 4704159643094157231339*x^3 - 4706219488221297420642*x^2 + 1052417297711836222461*x + 46181559728398496293)
 
gp: K = bnfinit(x^27 - 999*x^25 + 443556*x^23 - 115336881*x^21 + 19481903595*x^19 - 16541442*x^18 - 2241127346283*x^17 + 11016600372*x^16 + 179005600103112*x^15 - 3057106603230*x^14 - 9934810805722716*x^13 + 457479019247796*x^12 + 377261368227838926*x^11 - 39898705892968494*x^10 - 9477657404647124790*x^9 + 2044041394209001308*x^8 + 148376945318831526852*x^7 - 58822969011125704308*x^6 - 1294713215954782474563*x^5 + 847967475355188724440*x^4 + 4704159643094157231339*x^3 - 4706219488221297420642*x^2 + 1052417297711836222461*x + 46181559728398496293, 1)
 

Normalized defining polynomial

\( x^{27} - 999 x^{25} + 443556 x^{23} - 115336881 x^{21} + 19481903595 x^{19} - 16541442 x^{18} - 2241127346283 x^{17} + 11016600372 x^{16} + 179005600103112 x^{15} - 3057106603230 x^{14} - 9934810805722716 x^{13} + 457479019247796 x^{12} + 377261368227838926 x^{11} - 39898705892968494 x^{10} - 9477657404647124790 x^{9} + 2044041394209001308 x^{8} + 148376945318831526852 x^{7} - 58822969011125704308 x^{6} - 1294713215954782474563 x^{5} + 847967475355188724440 x^{4} + 4704159643094157231339 x^{3} - 4706219488221297420642 x^{2} + 1052417297711836222461 x + 46181559728398496293 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $27$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[27, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(30636512167696967158640831949436414926745966008852301931537630975865004722034443609=3^{94}\cdot 37^{24}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $1135.13$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(2997=3^{4}\cdot 37\)
Dirichlet character group:    $\lbrace$$\chi_{2997}(1,·)$, $\chi_{2997}(2821,·)$, $\chi_{2997}(7,·)$, $\chi_{2997}(2569,·)$, $\chi_{2997}(2764,·)$, $\chi_{2997}(1999,·)$, $\chi_{2997}(403,·)$, $\chi_{2997}(2005,·)$, $\chi_{2997}(1366,·)$, $\chi_{2997}(343,·)$, $\chi_{2997}(1048,·)$, $\chi_{2997}(1822,·)$, $\chi_{2997}(1765,·)$, $\chi_{2997}(2401,·)$, $\chi_{2997}(1570,·)$, $\chi_{2997}(2341,·)$, $\chi_{2997}(1000,·)$, $\chi_{2997}(1006,·)$, $\chi_{2997}(367,·)$, $\chi_{2997}(49,·)$, $\chi_{2997}(766,·)$, $\chi_{2997}(823,·)$, $\chi_{2997}(1402,·)$, $\chi_{2997}(571,·)$, $\chi_{2997}(2365,·)$, $\chi_{2997}(1342,·)$, $\chi_{2997}(2047,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{629} a^{9} + \frac{8}{17} a^{7} - \frac{4}{17} a^{5} + \frac{2}{17} a^{3} + \frac{5}{17} a$, $\frac{1}{629} a^{10} + \frac{8}{17} a^{8} - \frac{4}{17} a^{6} + \frac{2}{17} a^{4} + \frac{5}{17} a^{2}$, $\frac{1}{629} a^{11} + \frac{8}{17} a^{7} - \frac{4}{17} a^{5} + \frac{8}{17} a^{3} - \frac{1}{17} a$, $\frac{1}{629} a^{12} + \frac{8}{17} a^{8} - \frac{4}{17} a^{6} + \frac{8}{17} a^{4} - \frac{1}{17} a^{2}$, $\frac{1}{629} a^{13} + \frac{8}{17} a^{7} + \frac{2}{17} a^{5} + \frac{2}{17} a^{3} - \frac{1}{17} a$, $\frac{1}{23273} a^{14} - \frac{3}{17} a^{8} - \frac{5}{17} a^{6} + \frac{9}{37} a^{5} - \frac{5}{17} a^{4} - \frac{6}{17} a^{2}$, $\frac{1}{23273} a^{15} - \frac{1}{17} a^{7} + \frac{9}{37} a^{6} - \frac{7}{17} a^{5} - \frac{5}{17} a^{3} - \frac{6}{17} a$, $\frac{1}{23273} a^{16} - \frac{1}{17} a^{8} + \frac{9}{37} a^{7} - \frac{7}{17} a^{6} - \frac{5}{17} a^{4} - \frac{6}{17} a^{2}$, $\frac{1}{23273} a^{17} + \frac{9}{37} a^{8} - \frac{2}{17} a$, $\frac{1}{21030632982403633} a^{18} - \frac{18}{568395486010909} a^{16} + \frac{135}{15362040162457} a^{14} - \frac{546}{415190274661} a^{12} + \frac{47619}{415190274661} a^{10} - \frac{536993081}{1759738346783} a^{9} - \frac{2439558}{415190274661} a^{8} + \frac{4832937729}{47560495859} a^{7} + \frac{70205058}{415190274661} a^{6} - \frac{359206310}{1285418807} a^{5} - \frac{1012046940}{415190274661} a^{4} - \frac{372006538}{1285418807} a^{3} + \frac{5616860517}{415190274661} a^{2} - \frac{241151372}{1285418807} a - \frac{623580851}{1436644549}$, $\frac{1}{21030632982403633} a^{19} - \frac{18}{568395486010909} a^{17} + \frac{135}{15362040162457} a^{15} - \frac{546}{415190274661} a^{13} + \frac{47619}{415190274661} a^{11} - \frac{536993081}{1759738346783} a^{10} - \frac{2439558}{415190274661} a^{9} + \frac{4832937729}{47560495859} a^{8} + \frac{70205058}{415190274661} a^{7} - \frac{359206310}{1285418807} a^{6} - \frac{1012046940}{415190274661} a^{5} - \frac{372006538}{1285418807} a^{4} + \frac{5616860517}{415190274661} a^{3} - \frac{241151372}{1285418807} a^{2} - \frac{623580851}{1436644549} a$, $\frac{1}{21030632982403633} a^{20} - \frac{189}{15362040162457} a^{16} + \frac{1884}{415190274661} a^{14} - \frac{316017}{415190274661} a^{12} - \frac{536993081}{1759738346783} a^{11} + \frac{29274696}{415190274661} a^{10} + \frac{6286015}{47560495859} a^{9} - \frac{1554540570}{415190274661} a^{8} - \frac{623580322}{1285418807} a^{7} + \frac{45744521688}{415190274661} a^{6} - \frac{591123767}{1285418807} a^{5} + \frac{9527891047}{24422957333} a^{4} - \frac{516578897}{1285418807} a^{3} - \frac{176098233566}{415190274661} a^{2} - \frac{156301490}{1285418807} a - \frac{114572105}{1436644549}$, $\frac{1}{778133420348934421} a^{21} - \frac{189}{568395486010909} a^{17} + \frac{1884}{15362040162457} a^{15} - \frac{8541}{415190274661} a^{13} - \frac{48097488940}{65110318830971} a^{12} + \frac{791208}{415190274661} a^{11} + \frac{44847925}{103514020399} a^{10} - \frac{42014610}{415190274661} a^{9} + \frac{22135893849}{47560495859} a^{8} + \frac{1236338424}{415190274661} a^{7} + \frac{41244233}{1285418807} a^{6} - \frac{1062649287}{24422957333} a^{5} - \frac{112053965}{1285418807} a^{4} + \frac{239092041095}{15362040162457} a^{3} + \frac{271660435}{1285418807} a^{2} + \frac{268701074}{1436644549} a$, $\frac{1}{778133420348934421} a^{22} - \frac{1518}{15362040162457} a^{16} + \frac{16974}{415190274661} a^{14} - \frac{48097488940}{65110318830971} a^{13} - \frac{3026970}{415190274661} a^{12} + \frac{44847925}{103514020399} a^{11} + \frac{15315003}{21852119719} a^{10} + \frac{37716090}{47560495859} a^{9} - \frac{15823490670}{415190274661} a^{8} - \frac{315071021}{1285418807} a^{7} + \frac{57688658054}{415190274661} a^{6} - \frac{409043788}{1285418807} a^{5} - \frac{24434868404}{808528429603} a^{4} - \frac{87297399}{1285418807} a^{3} - \frac{86715887028}{415190274661} a^{2} - \frac{128908225}{1285418807} a - \frac{484684828}{1436644549}$, $\frac{1}{1777740569733243080408939559649} a^{23} + \frac{26543476679}{48047042425222785956998366477} a^{22} - \frac{23}{48047042425222785956998366477} a^{21} - \frac{28237672505}{1298568714195210431270226121} a^{20} + \frac{230}{1298568714195210431270226121} a^{19} + \frac{15223028119}{1298568714195210431270226121} a^{18} - \frac{69}{1847181670263457227980407} a^{17} - \frac{1293648881831391}{35096451735005687331627733} a^{16} + \frac{276}{55797220564396959191777} a^{15} - \frac{37316756985926667842128}{48047042425222785956998366477} a^{14} + \frac{616236253949691411388340}{1298568714195210431270226121} a^{13} + \frac{529243608147730330853819}{1298568714195210431270226121} a^{12} - \frac{16863061649685818242074}{35096451735005687331627733} a^{11} - \frac{19841324371848394486143}{35096451735005687331627733} a^{10} + \frac{5114740303262712872064}{35096451735005687331627733} a^{9} - \frac{111587502981761356603109}{948552749594748306260209} a^{8} + \frac{247759972427983137227753}{948552749594748306260209} a^{7} - \frac{7328313829508419099231}{25636560799858062331357} a^{6} - \frac{15840393868520914387225144}{35096451735005687331627733} a^{5} - \frac{285996449267729576996598}{948552749594748306260209} a^{4} + \frac{448331642751667009326337}{948552749594748306260209} a^{3} + \frac{6988199626922196382578}{25636560799858062331357} a^{2} - \frac{427946471323982375122}{1508032988226944843021} a - \frac{11068032118128676676}{88707822836879108413}$, $\frac{1}{1777740569733243080408939559649} a^{24} - \frac{24}{48047042425222785956998366477} a^{22} - \frac{5835921869}{48047042425222785956998366477} a^{21} + \frac{252}{1298568714195210431270226121} a^{20} - \frac{938710625}{1298568714195210431270226121} a^{19} - \frac{80}{1847181670263457227980407} a^{18} + \frac{1119886024491}{35096451735005687331627733} a^{17} + \frac{18}{2936695819178787325883} a^{16} - \frac{38062120796449743262522}{48047042425222785956998366477} a^{15} - \frac{864}{1508032988226944843021} a^{14} + \frac{570925912549045373619372}{1298568714195210431270226121} a^{13} + \frac{987994257572914215351838}{1298568714195210431270226121} a^{12} - \frac{21916098877319002630276}{35096451735005687331627733} a^{11} - \frac{5500610746476645733422}{35096451735005687331627733} a^{10} - \frac{319514550217837463456}{948552749594748306260209} a^{9} - \frac{183230434911094580242501}{948552749594748306260209} a^{8} + \frac{6562676899997053372346}{25636560799858062331357} a^{7} - \frac{14176993779234747683745305}{35096451735005687331627733} a^{6} + \frac{6976379285958951228314}{25636560799858062331357} a^{5} + \frac{450540452879550517204858}{948552749594748306260209} a^{4} - \frac{230627654043987415491063}{948552749594748306260209} a^{3} + \frac{2684109814036574751480}{25636560799858062331357} a^{2} - \frac{304268930095502631552}{1508032988226944843021} a - \frac{10732504433005233815}{88707822836879108413}$, $\frac{1}{65776401080129993975130763707013} a^{25} - \frac{15624967332}{48047042425222785956998366477} a^{22} - \frac{300}{48047042425222785956998366477} a^{21} - \frac{186451639}{1298568714195210431270226121} a^{20} + \frac{4000}{1298568714195210431270226121} a^{19} + \frac{3321860859}{1298568714195210431270226121} a^{18} - \frac{1350}{1847181670263457227980407} a^{17} + \frac{32993937532347886346317906}{1777740569733243080408939559649} a^{16} + \frac{5760}{55797220564396959191777} a^{15} - \frac{343051714313937145823070}{48047042425222785956998366477} a^{14} - \frac{46350949188070281124463}{68345721799747917435275059} a^{13} - \frac{956944078196310237874114}{1298568714195210431270226121} a^{12} + \frac{21183002356273631163722}{35096451735005687331627733} a^{11} - \frac{6643804497939078679329}{35096451735005687331627733} a^{10} - \frac{8955261449214572427996}{35096451735005687331627733} a^{9} + \frac{122203928331981472089453}{948552749594748306260209} a^{8} + \frac{60495926703033438938662356}{1298568714195210431270226121} a^{7} + \frac{8546738565301371492726}{25636560799858062331357} a^{6} - \frac{11082613534163143177067497}{35096451735005687331627733} a^{5} - \frac{160473141276771782927418}{948552749594748306260209} a^{4} + \frac{10002172688677533896043}{25636560799858062331357} a^{3} - \frac{10262860446668280729964}{25636560799858062331357} a^{2} - \frac{145141427725471295960}{1508032988226944843021} a + \frac{43583578412790176538}{88707822836879108413}$, $\frac{1}{65776401080129993975130763707013} a^{26} - \frac{325}{48047042425222785956998366477} a^{22} - \frac{28240898720}{48047042425222785956998366477} a^{21} + \frac{4550}{1298568714195210431270226121} a^{20} - \frac{30242398119}{1298568714195210431270226121} a^{19} - \frac{1625}{1847181670263457227980407} a^{18} + \frac{32993893314604620819064291}{1777740569733243080408939559649} a^{17} + \frac{390}{2936695819178787325883} a^{16} - \frac{342556918923444870969816}{48047042425222785956998366477} a^{15} - \frac{19500}{1508032988226944843021} a^{14} - \frac{7790680221775816193574}{1298568714195210431270226121} a^{13} - \frac{1004640453361939497670352}{1298568714195210431270226121} a^{12} + \frac{16532022347575568834084}{35096451735005687331627733} a^{11} - \frac{17365752890670399026522}{35096451735005687331627733} a^{10} - \frac{23389042893094723797}{49923828926039384540011} a^{9} - \frac{216855768407000306368590204}{1298568714195210431270226121} a^{8} - \frac{2052622057693139922525}{25636560799858062331357} a^{7} + \frac{6447907439683022711485673}{35096451735005687331627733} a^{6} + \frac{6667809811944686953071}{25636560799858062331357} a^{5} - \frac{317981912049979049702323}{948552749594748306260209} a^{4} - \frac{170451672829038376866978}{948552749594748306260209} a^{3} + \frac{9073475495390872243641}{25636560799858062331357} a^{2} - \frac{118328769310409437529}{1508032988226944843021} a - \frac{2189142314493520136}{88707822836879108413}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{9}$, which has order $9$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $26$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 299574682868233200000000000000000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{27}$ (as 27T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 27
The 27 conjugacy class representatives for $C_{27}$
Character table for $C_{27}$ is not computed

Intermediate fields

\(\Q(\zeta_{9})^+\), 9.9.80515213381214514081.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $27$ R $27$ $27$ $27$ $27$ ${\href{/LocalNumberField/17.1.0.1}{1} }^{27}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{9}$ $27$ $27$ $27$ R $27$ $27$ $27$ ${\href{/LocalNumberField/53.9.0.1}{9} }^{3}$ $27$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
$37$37.9.8.6$x^{9} + 1184$$9$$1$$8$$C_9$$[\ ]_{9}$
37.9.8.6$x^{9} + 1184$$9$$1$$8$$C_9$$[\ ]_{9}$
37.9.8.6$x^{9} + 1184$$9$$1$$8$$C_9$$[\ ]_{9}$