Normalized defining polynomial
\( x^{27} - 999 x^{25} + 443556 x^{23} - 115336881 x^{21} + 19481903595 x^{19} - 43544412 x^{18} - 2241127346283 x^{17} + 29000578392 x^{16} + 179005600103112 x^{15} - 8047660503780 x^{14} - 9934810805722716 x^{13} + 1204287685165656 x^{12} + 377261368227838926 x^{11} - 105031090256233284 x^{10} - 9477154119242768340 x^{9} + 5380823546973182088 x^{8} + 148209351279180829002 x^{7} - 154848144296228240088 x^{6} - 1276110277553555013213 x^{5} + 2232226495698874629840 x^{4} + 3939372175488139375839 x^{3} - 12388857051128754195612 x^{2} + 9541558188138634418511 x - 2080943940400297569469 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(30636512167696967158640831949436414926745966008852301931537630975865004722034443609=3^{94}\cdot 37^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1135.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2997=3^{4}\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2997}(1,·)$, $\chi_{2997}(1099,·)$, $\chi_{2997}(1348,·)$, $\chi_{2997}(1921,·)$, $\chi_{2997}(10,·)$, $\chi_{2997}(1291,·)$, $\chi_{2997}(1228,·)$, $\chi_{2997}(1933,·)$, $\chi_{2997}(1999,·)$, $\chi_{2997}(1492,·)$, $\chi_{2997}(2008,·)$, $\chi_{2997}(100,·)$, $\chi_{2997}(922,·)$, $\chi_{2997}(349,·)$, $\chi_{2997}(292,·)$, $\chi_{2997}(229,·)$, $\chi_{2997}(934,·)$, $\chi_{2997}(1009,·)$, $\chi_{2997}(2920,·)$, $\chi_{2997}(2290,·)$, $\chi_{2997}(2347,·)$, $\chi_{2997}(493,·)$, $\chi_{2997}(1000,·)$, $\chi_{2997}(2098,·)$, $\chi_{2997}(2227,·)$, $\chi_{2997}(2932,·)$, $\chi_{2997}(2491,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{37} a^{9}$, $\frac{1}{37} a^{10}$, $\frac{1}{37} a^{11}$, $\frac{1}{37} a^{12}$, $\frac{1}{37} a^{13}$, $\frac{1}{1369} a^{14} - \frac{17}{37} a^{5}$, $\frac{1}{1369} a^{15} - \frac{17}{37} a^{6}$, $\frac{1}{1369} a^{16} - \frac{17}{37} a^{7}$, $\frac{1}{1369} a^{17} - \frac{17}{37} a^{8}$, $\frac{1}{3239531404691195231} a^{18} - \frac{18}{87554902829491763} a^{16} + \frac{135}{2366348725121399} a^{14} - \frac{546}{63955370949227} a^{12} + \frac{47619}{63955370949227} a^{10} - \frac{1090175382754021}{87554902829491763} a^{9} - \frac{2439558}{63955370949227} a^{8} + \frac{346183544300593}{2366348725121399} a^{7} + \frac{70205058}{63955370949227} a^{6} - \frac{15264697714147}{63955370949227} a^{5} - \frac{1012046940}{63955370949227} a^{4} - \frac{4898873360757}{63955370949227} a^{3} + \frac{5616860517}{63955370949227} a^{2} - \frac{15973413739747}{63955370949227} a - \frac{20477765767421}{63955370949227}$, $\frac{1}{3239531404691195231} a^{19} - \frac{18}{87554902829491763} a^{17} + \frac{135}{2366348725121399} a^{15} - \frac{546}{63955370949227} a^{13} + \frac{47619}{63955370949227} a^{11} - \frac{1090175382754021}{87554902829491763} a^{10} - \frac{2439558}{63955370949227} a^{9} + \frac{346183544300593}{2366348725121399} a^{8} + \frac{70205058}{63955370949227} a^{7} - \frac{15264697714147}{63955370949227} a^{6} - \frac{1012046940}{63955370949227} a^{5} - \frac{4898873360757}{63955370949227} a^{4} + \frac{5616860517}{63955370949227} a^{3} - \frac{15973413739747}{63955370949227} a^{2} - \frac{20477765767421}{63955370949227} a$, $\frac{1}{3239531404691195231} a^{20} - \frac{189}{2366348725121399} a^{16} + \frac{1884}{63955370949227} a^{14} - \frac{316017}{63955370949227} a^{12} - \frac{1090175382754021}{87554902829491763} a^{11} + \frac{29274696}{63955370949227} a^{10} - \frac{26406689554458}{2366348725121399} a^{9} - \frac{1554540570}{63955370949227} a^{8} + \frac{12368117621508}{63955370949227} a^{7} + \frac{45744521688}{63955370949227} a^{6} - \frac{2283570055566}{63955370949227} a^{5} - \frac{668406401523}{63955370949227} a^{4} - \frac{16899153593332}{63955370949227} a^{3} - \frac{16736936663099}{63955370949227} a^{2} - \frac{21701973099820}{63955370949227} a - \frac{15697988917035}{63955370949227}$, $\frac{1}{119862661973574223547} a^{21} - \frac{189}{87554902829491763} a^{17} + \frac{1884}{2366348725121399} a^{15} - \frac{8541}{63955370949227} a^{13} + \frac{27306009318702767}{3239531404691195231} a^{12} + \frac{791208}{63955370949227} a^{11} - \frac{346183544300593}{87554902829491763} a^{10} - \frac{42014610}{63955370949227} a^{9} + \frac{460055714266097}{2366348725121399} a^{8} + \frac{1236338424}{63955370949227} a^{7} + \frac{5123852507895}{63955370949227} a^{6} - \frac{18065037879}{63955370949227} a^{5} + \frac{22014072128287}{63955370949227} a^{4} - \frac{784201388053823}{2366348725121399} a^{3} - \frac{31699963518538}{63955370949227} a^{2} + \frac{15132441881784}{63955370949227} a$, $\frac{1}{119862661973574223547} a^{22} - \frac{1518}{2366348725121399} a^{16} + \frac{16974}{63955370949227} a^{14} + \frac{27306009318702767}{3239531404691195231} a^{13} - \frac{3026970}{63955370949227} a^{12} - \frac{346183544300593}{87554902829491763} a^{11} + \frac{290985057}{63955370949227} a^{10} - \frac{30529395428294}{2366348725121399} a^{9} - \frac{15823490670}{63955370949227} a^{8} + \frac{7469244260751}{63955370949227} a^{7} + \frac{472878932715}{63955370949227} a^{6} + \frac{17497071358179}{63955370949227} a^{5} - \frac{1046059425356363}{2366348725121399} a^{4} - \frac{9442546506567}{63955370949227} a^{3} - \frac{9544223472062}{63955370949227} a^{2} + \frac{27950766248798}{63955370949227} a - \frac{4940456255800}{63955370949227}$, $\frac{1}{34345427669002829238702127222031} a^{23} + \frac{1552458225}{928254801864941330775733168163} a^{22} - \frac{23}{928254801864941330775733168163} a^{21} - \frac{3176801234}{25087967617971387318263058599} a^{20} + \frac{230}{25087967617971387318263058599} a^{19} + \frac{1463563975}{25087967617971387318263058599} a^{18} - \frac{1311}{678053178864091549142244827} a^{17} - \frac{65006341787538}{678053178864091549142244827} a^{16} + \frac{4692}{18325761590921393220060671} a^{15} - \frac{264893115917093498700722514}{928254801864941330775733168163} a^{14} - \frac{266818186019111243278717947}{25087967617971387318263058599} a^{13} + \frac{318238075816380723262472321}{25087967617971387318263058599} a^{12} + \frac{7948332975076953170246058}{678053178864091549142244827} a^{11} - \frac{199723551265758730945764}{678053178864091549142244827} a^{10} + \frac{5055726172069455461822238}{678053178864091549142244827} a^{9} + \frac{8875205574680922070782305}{18325761590921393220060671} a^{8} - \frac{3792671826480720449430234}{18325761590921393220060671} a^{7} - \frac{43444408407429525697475}{495290853808686303244883} a^{6} - \frac{7086408822364248731863718}{678053178864091549142244827} a^{5} + \frac{122662560121237956041233}{18325761590921393220060671} a^{4} - \frac{8421124810870374637722699}{18325761590921393220060671} a^{3} + \frac{247339832852159499490033}{495290853808686303244883} a^{2} - \frac{62178021050901766043612}{495290853808686303244883} a + \frac{168594775190953721152843}{495290853808686303244883}$, $\frac{1}{34345427669002829238702127222031} a^{24} - \frac{24}{928254801864941330775733168163} a^{22} + \frac{3230714822}{928254801864941330775733168163} a^{21} + \frac{252}{25087967617971387318263058599} a^{20} + \frac{1853868099}{25087967617971387318263058599} a^{19} - \frac{1520}{678053178864091549142244827} a^{18} - \frac{643974727140}{678053178864091549142244827} a^{17} + \frac{5814}{18325761590921393220060671} a^{16} - \frac{264893153775902480429225484}{928254801864941330775733168163} a^{15} - \frac{14688}{495290853808686303244883} a^{14} - \frac{94921763180204500012921035}{25087967617971387318263058599} a^{13} + \frac{174365852944413544674340919}{25087967617971387318263058599} a^{12} + \frac{1431964689109920951646234}{678053178864091549142244827} a^{11} - \frac{5934370089142140527759983}{678053178864091549142244827} a^{10} + \frac{219756688087156155372973}{18325761590921393220060671} a^{9} + \frac{2117444764781865873017351}{18325761590921393220060671} a^{8} + \frac{225737515397727586713913}{495290853808686303244883} a^{7} - \frac{88309130295843903180272413}{678053178864091549142244827} a^{6} - \frac{240275151051640066299423}{495290853808686303244883} a^{5} + \frac{2335482340206439866058443}{18325761590921393220060671} a^{4} - \frac{2796078617765878122972303}{18325761590921393220060671} a^{3} - \frac{171219507631771695861743}{495290853808686303244883} a^{2} + \frac{220925169326066112741796}{495290853808686303244883} a + \frac{56517831680010995472291}{495290853808686303244883}$, $\frac{1}{1270780823753104681831978707215147} a^{25} + \frac{2428540}{25087967617971387318263058599} a^{22} - \frac{300}{928254801864941330775733168163} a^{21} - \frac{424373335}{25087967617971387318263058599} a^{20} + \frac{4000}{25087967617971387318263058599} a^{19} + \frac{2952082651}{25087967617971387318263058599} a^{18} - \frac{25650}{678053178864091549142244827} a^{17} - \frac{8401531300573995745348295076}{34345427669002829238702127222031} a^{16} + \frac{97920}{18325761590921393220060671} a^{15} + \frac{328174329964637186928068636}{928254801864941330775733168163} a^{14} - \frac{7275730911195183624936789}{678053178864091549142244827} a^{13} + \frac{70610729815733533268105763}{25087967617971387318263058599} a^{12} + \frac{7474342263606736383849710}{678053178864091549142244827} a^{11} - \frac{4090082644527537056166141}{678053178864091549142244827} a^{10} - \frac{6867151731771216496279520}{678053178864091549142244827} a^{9} + \frac{273003386443331853142637}{18325761590921393220060671} a^{8} - \frac{379509873944398224376466041}{25087967617971387318263058599} a^{7} + \frac{61175538496841432384817}{495290853808686303244883} a^{6} + \frac{321980913897592063765653362}{678053178864091549142244827} a^{5} + \frac{182690932132056568546968}{495290853808686303244883} a^{4} - \frac{75925136313395215811896}{495290853808686303244883} a^{3} - \frac{80532905792388523183725}{495290853808686303244883} a^{2} + \frac{146732134134753923881177}{495290853808686303244883} a + \frac{150690577865126248921511}{495290853808686303244883}$, $\frac{1}{1270780823753104681831978707215147} a^{26} - \frac{325}{928254801864941330775733168163} a^{22} - \frac{1188933847}{928254801864941330775733168163} a^{21} + \frac{4550}{25087967617971387318263058599} a^{20} - \frac{2778954107}{25087967617971387318263058599} a^{19} - \frac{30875}{678053178864091549142244827} a^{18} - \frac{8401531300452070155124657020}{34345427669002829238702127222031} a^{17} + \frac{125970}{18325761590921393220060671} a^{16} + \frac{328174328451915994026845522}{928254801864941330775733168163} a^{15} - \frac{331500}{495290853808686303244883} a^{14} - \frac{87592198745984494067850182}{25087967617971387318263058599} a^{13} + \frac{173221446331292324918001168}{25087967617971387318263058599} a^{12} + \frac{62769567076537927254210}{678053178864091549142244827} a^{11} - \frac{1293152986031918051907141}{678053178864091549142244827} a^{10} - \frac{184404344476281839791317}{18325761590921393220060671} a^{9} - \frac{2371982084697741945500894770}{25087967617971387318263058599} a^{8} - \frac{128753723278390452810082}{495290853808686303244883} a^{7} + \frac{162998952926049797450447580}{678053178864091549142244827} a^{6} - \frac{13430845508286209813497}{495290853808686303244883} a^{5} + \frac{7007900442145502663289397}{18325761590921393220060671} a^{4} + \frac{6857512832350622271574278}{18325761590921393220060671} a^{3} - \frac{102934641490210891192056}{495290853808686303244883} a^{2} + \frac{195803949144130386660773}{495290853808686303244883} a - \frac{72926769425784022927374}{495290853808686303244883}$
Class group and class number
Not computed
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 27 |
| The 27 conjugacy class representatives for $C_{27}$ |
| Character table for $C_{27}$ is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 9.9.80515213381214514081.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $27$ | R | $27$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{3}$ | $27$ | $27$ | $27$ | R | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{3}$ | $27$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $37$ | 37.9.8.8 | $x^{9} + 4736$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
| 37.9.8.8 | $x^{9} + 4736$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |
| 37.9.8.8 | $x^{9} + 4736$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |