Normalized defining polynomial
\( x^{27} - 981 x^{25} - 3924 x^{24} + 382590 x^{23} + 2805660 x^{22} - 73225110 x^{21} - 777428766 x^{20} + 6903675666 x^{19} + 108416615105 x^{18} - 232610440878 x^{17} - 8313083080686 x^{16} - 10743842518713 x^{15} + 356369675039019 x^{14} + 1267991081780472 x^{13} - 8109166737504153 x^{12} - 47356437284334108 x^{11} + 77344277257641249 x^{10} + 865257605899112586 x^{9} + 207644338670160276 x^{8} - 7923812360425415109 x^{7} - 8650195833611503449 x^{6} + 33977534604641591400 x^{5} + 43373094180308101017 x^{4} - 71561295489954712743 x^{3} - 56974306727633418045 x^{2} + 68809894376068855206 x - 1699412318998420661 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2904636282635430627257935704503025621208529312293717639293800815805291320812817603089=3^{66}\cdot 109^{26}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1343.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2943=3^{3}\cdot 109\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2943}(1,·)$, $\chi_{2943}(517,·)$, $\chi_{2943}(2689,·)$, $\chi_{2943}(1357,·)$, $\chi_{2943}(910,·)$, $\chi_{2943}(661,·)$, $\chi_{2943}(2134,·)$, $\chi_{2943}(1753,·)$, $\chi_{2943}(2713,·)$, $\chi_{2943}(2074,·)$, $\chi_{2943}(2587,·)$, $\chi_{2943}(349,·)$, $\chi_{2943}(2596,·)$, $\chi_{2943}(2533,·)$, $\chi_{2943}(2791,·)$, $\chi_{2943}(2503,·)$, $\chi_{2943}(2305,·)$, $\chi_{2943}(877,·)$, $\chi_{2943}(1006,·)$, $\chi_{2943}(1117,·)$, $\chi_{2943}(2800,·)$, $\chi_{2943}(1138,·)$, $\chi_{2943}(2419,·)$, $\chi_{2943}(2869,·)$, $\chi_{2943}(187,·)$, $\chi_{2943}(124,·)$, $\chi_{2943}(1135,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $\frac{1}{148943807876537254139364382917158809995583867399407140271720942263517514764824734758305166695619565860482430731851919515375004519289882268119433959660683805580870525106252338291099538078625938607278954629834264726051689484587372868179527979549370751} a^{26} + \frac{8205428139204239703883314759948090861267547489045367138243327982213967169215014025273952357348439316011675785308242213737337769267281999424663554562626813738482301123491936581485682344273728378076384617805427941927523367870546146898741033887632462}{148943807876537254139364382917158809995583867399407140271720942263517514764824734758305166695619565860482430731851919515375004519289882268119433959660683805580870525106252338291099538078625938607278954629834264726051689484587372868179527979549370751} a^{25} - \frac{59160300016755342526044340524467397726802502579366643881004422289104517858391495244752908207910263515859819402434235634150072446115388182889495656791861952857920992086404029457183695574624678311282696381886205040646793299154205773496035325935689493}{148943807876537254139364382917158809995583867399407140271720942263517514764824734758305166695619565860482430731851919515375004519289882268119433959660683805580870525106252338291099538078625938607278954629834264726051689484587372868179527979549370751} a^{24} + \frac{60537539141468958110545304679174973653603130463618796292319612254356668693614789897358708792610875080364273092779593768097572576209966265600261963713825582640337653680398845913144845455957285173959905921800854056739741893975969998945732321388621445}{148943807876537254139364382917158809995583867399407140271720942263517514764824734758305166695619565860482430731851919515375004519289882268119433959660683805580870525106252338291099538078625938607278954629834264726051689484587372868179527979549370751} a^{23} + \frac{10538676973964954381798671308337945156876748248943124730706530839072992069365412640824033853891124763641063329450803868695494434629497368601163981389447820668249450588041192887200673451582341434228538487637638614423109122111459347458249503635016132}{148943807876537254139364382917158809995583867399407140271720942263517514764824734758305166695619565860482430731851919515375004519289882268119433959660683805580870525106252338291099538078625938607278954629834264726051689484587372868179527979549370751} a^{22} - \frac{1780531138523538564087450138726727248261828807912224209607098515217366499708747984641886233143376534408895106644708766869778003765131193383958083119987081395123431203387971714330434814095795441860088957157054131898402557903520526738633797454745364}{148943807876537254139364382917158809995583867399407140271720942263517514764824734758305166695619565860482430731851919515375004519289882268119433959660683805580870525106252338291099538078625938607278954629834264726051689484587372868179527979549370751} a^{21} + \frac{21595914344306033299149492492881826731741274483651765019779999195159800966569075171257175176224650871747258717906930372781151941044678985217122752168422115895929820284978263421947231145160258856249210080569271633119946187758762837346816983529980537}{148943807876537254139364382917158809995583867399407140271720942263517514764824734758305166695619565860482430731851919515375004519289882268119433959660683805580870525106252338291099538078625938607278954629834264726051689484587372868179527979549370751} a^{20} - \frac{20710997160577569311868063671481863843556641852755054390620946950594664413794580448138781535286345062135828627253394788986081274209393620746210654782842221940840893020653301017483059475050672191488941388877193354416154362012318373135992323003925866}{148943807876537254139364382917158809995583867399407140271720942263517514764824734758305166695619565860482430731851919515375004519289882268119433959660683805580870525106252338291099538078625938607278954629834264726051689484587372868179527979549370751} a^{19} + \frac{5058914786868945895998310271934625162014667539087973364330091686740306136567387156854668275243300031017300026621035736659424323849536938168470827055186463017601961796698941615658533134091063122906588030855219268989069882237302399611415607487422200}{148943807876537254139364382917158809995583867399407140271720942263517514764824734758305166695619565860482430731851919515375004519289882268119433959660683805580870525106252338291099538078625938607278954629834264726051689484587372868179527979549370751} a^{18} - \frac{42317259892482376855963410896449520185299000472851701445485222248676600327244848145085903179900819447004499286188543841413758152469231938021126355779793322275751859265091509701051078825953866160052760039680617543112064604788774905701693614682968772}{148943807876537254139364382917158809995583867399407140271720942263517514764824734758305166695619565860482430731851919515375004519289882268119433959660683805580870525106252338291099538078625938607278954629834264726051689484587372868179527979549370751} a^{17} + \frac{69519313517429494020819353128293668082064429853747296477922561811162291128290405981535739163053983612784586332881241049680010805065677980618911717023676304071605138354932192445493483242141694788545325728245718540836206917758965266557659564475965017}{148943807876537254139364382917158809995583867399407140271720942263517514764824734758305166695619565860482430731851919515375004519289882268119433959660683805580870525106252338291099538078625938607278954629834264726051689484587372868179527979549370751} a^{16} + \frac{66998285579718342622979706774849735810475647814711811363850271518120436576315310703609454736410101600471594862458485809279511550790115318954864160966803420984947674524912464895835258937070932950220355216959836388891765866060877115047424424063178811}{148943807876537254139364382917158809995583867399407140271720942263517514764824734758305166695619565860482430731851919515375004519289882268119433959660683805580870525106252338291099538078625938607278954629834264726051689484587372868179527979549370751} a^{15} - \frac{2234999975713422878470881776880631569847551155794965058548108707387865750294378597952032924891165790460682440219925764821316053349073254608797816689137201419900352976361297442352766511177065870008197566009804907106953679523781279240069998430936487}{148943807876537254139364382917158809995583867399407140271720942263517514764824734758305166695619565860482430731851919515375004519289882268119433959660683805580870525106252338291099538078625938607278954629834264726051689484587372868179527979549370751} a^{14} - \frac{11690849306521036757928414546799230622981918856854667176526427244391459969168489264566440567739657766754398894690991621740814525943672488773646941595490926397650467738539144708894592884458313120279358628758343620830835484581790245878536673434138143}{148943807876537254139364382917158809995583867399407140271720942263517514764824734758305166695619565860482430731851919515375004519289882268119433959660683805580870525106252338291099538078625938607278954629834264726051689484587372868179527979549370751} a^{13} + \frac{59166419931530655331836136272848147214023409709280672795669778573242316539327166307375691665955649204602537810260622091808209865135857575666729830196117639006457786994031834708317807940090270063295811265623256715938266058748216223540785748660080719}{148943807876537254139364382917158809995583867399407140271720942263517514764824734758305166695619565860482430731851919515375004519289882268119433959660683805580870525106252338291099538078625938607278954629834264726051689484587372868179527979549370751} a^{12} + \frac{64158907027941717641616083515185891355561572003639508913761545669571974196920594861842339197442851187039892641301529939809914314632636773685328564760669996831254745506957057820428147556825625915813375174806125983091669900086622001248330028516466977}{148943807876537254139364382917158809995583867399407140271720942263517514764824734758305166695619565860482430731851919515375004519289882268119433959660683805580870525106252338291099538078625938607278954629834264726051689484587372868179527979549370751} a^{11} + \frac{26540374525222220512160634662298400664149909863337828282188044309951083411232289173350515725459854883257268809615368175378508179586755851698834708460087831074559049504117709810002769884069561092966227716970492690924106547861864834463798087798851433}{148943807876537254139364382917158809995583867399407140271720942263517514764824734758305166695619565860482430731851919515375004519289882268119433959660683805580870525106252338291099538078625938607278954629834264726051689484587372868179527979549370751} a^{10} + \frac{65645175608022767922717751965942091097416651498629905505537041392305340703488788608411639229638537032235177487693893246796375111404547714900892569846310331759062044004533018156954715303428789457840098570531242347961990899558189946471949769828281306}{148943807876537254139364382917158809995583867399407140271720942263517514764824734758305166695619565860482430731851919515375004519289882268119433959660683805580870525106252338291099538078625938607278954629834264726051689484587372868179527979549370751} a^{9} + \frac{50375071873867329887966752666216044498936055098181692129452163906537935954277680020972329862205079622621845493523074307082640470825536081272837207923436558349321346271626842728069361739486955528659706813983655879049841718997137584462688167892052532}{148943807876537254139364382917158809995583867399407140271720942263517514764824734758305166695619565860482430731851919515375004519289882268119433959660683805580870525106252338291099538078625938607278954629834264726051689484587372868179527979549370751} a^{8} - \frac{11756909094427829398102718624053470323650031086249339872214020489743628047427437621289937842951753493847681675749993655775312292697118288118141954910341292124739379493084134949425485118116615598749479161998122597758036107303109466977457930441579181}{148943807876537254139364382917158809995583867399407140271720942263517514764824734758305166695619565860482430731851919515375004519289882268119433959660683805580870525106252338291099538078625938607278954629834264726051689484587372868179527979549370751} a^{7} - \frac{7438244375676416363352775139643977051629732290550423257250146036276686372777862810122122623246098419887584371089530951050606674779438624925301883194186245182117806809106233144200554790063223748657399395825146135319862161459457178944041534755204810}{148943807876537254139364382917158809995583867399407140271720942263517514764824734758305166695619565860482430731851919515375004519289882268119433959660683805580870525106252338291099538078625938607278954629834264726051689484587372868179527979549370751} a^{6} - \frac{50663016719757223138215547987183651239770300378403078776636836090032028425376528311895683690633304313519879007157572989945055958384866945936995682841256596752299580797616445558750497656221980930108093535760330427725928281064341623114777907282074565}{148943807876537254139364382917158809995583867399407140271720942263517514764824734758305166695619565860482430731851919515375004519289882268119433959660683805580870525106252338291099538078625938607278954629834264726051689484587372868179527979549370751} a^{5} + \frac{54646783244465009558886740720522979632586471515706441549563641519752833422075245743820605854305962045139132026919379205353694334407981387470388951806056574407333701236806808898496432339921292379287989307361052123763116656583036757316262741082368714}{148943807876537254139364382917158809995583867399407140271720942263517514764824734758305166695619565860482430731851919515375004519289882268119433959660683805580870525106252338291099538078625938607278954629834264726051689484587372868179527979549370751} a^{4} + \frac{40761557532025369803984399094264918066534651262019658775912486715595630698649600023220414599663433840266792882514307696525405326212667825142558315886337933502379520818668812172333000939130541521651938685632606002730293619446574685149495123422213655}{148943807876537254139364382917158809995583867399407140271720942263517514764824734758305166695619565860482430731851919515375004519289882268119433959660683805580870525106252338291099538078625938607278954629834264726051689484587372868179527979549370751} a^{3} + \frac{52269724075118862247676712693230142091793601090824760466655246606967907123196599105041284626216117847226182064594280124927740186559917769580708358484138285139834217223268051231653929521201720340815485481745568822986734719678950935044408973686556436}{148943807876537254139364382917158809995583867399407140271720942263517514764824734758305166695619565860482430731851919515375004519289882268119433959660683805580870525106252338291099538078625938607278954629834264726051689484587372868179527979549370751} a^{2} - \frac{31355327874685735012695436170479796628964215189665569465691483868551974773484644499445425971180538927074948875197333877684869743769011409447872847943232706573557020497314874596067410715257536723668255740180166608345673536260675541661796972691722123}{148943807876537254139364382917158809995583867399407140271720942263517514764824734758305166695619565860482430731851919515375004519289882268119433959660683805580870525106252338291099538078625938607278954629834264726051689484587372868179527979549370751} a - \frac{10972693468553517871256819685516189632069105490446162130178796476519879140228872416622945266386481409735775388955953649387808455324674861049267177780942404549689887224477798530507111218955563342373749901134833410798093073442396911618989551789557906}{148943807876537254139364382917158809995583867399407140271720942263517514764824734758305166695619565860482430731851919515375004519289882268119433959660683805580870525106252338291099538078625938607278954629834264726051689484587372868179527979549370751}$
Class group and class number
Not computed
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 27 |
| The 27 conjugacy class representatives for $C_{27}$ |
| Character table for $C_{27}$ is not computed |
Intermediate fields
| 3.3.11881.1, 9.9.10589294828624773798161.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{3}$ | R | $27$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{3}$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{3}$ | $27$ | $27$ | $27$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 109 | Data not computed | ||||||