Normalized defining polynomial
\( x^{27} - 9 x^{26} - 45 x^{25} + 558 x^{24} + 564 x^{23} - 14325 x^{22} + 3278 x^{21} + 200187 x^{20} - 152250 x^{19} - 1689790 x^{18} + 1662003 x^{17} + 9058716 x^{16} - 9244050 x^{15} - 31587348 x^{14} + 28970679 x^{13} + 71864499 x^{12} - 50585529 x^{11} - 103930188 x^{10} + 44676536 x^{9} + 88142967 x^{8} - 15697422 x^{7} - 37059379 x^{6} + 2104236 x^{5} + 7157724 x^{4} - 134797 x^{3} - 528300 x^{2} + 16716 x + 7064 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(27485917061841905258715957728464424188465393850574441=3^{36}\cdot 7^{18}\cdot 13^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $87.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(819=3^{2}\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{819}(256,·)$, $\chi_{819}(1,·)$, $\chi_{819}(646,·)$, $\chi_{819}(781,·)$, $\chi_{819}(718,·)$, $\chi_{819}(79,·)$, $\chi_{819}(16,·)$, $\chi_{819}(529,·)$, $\chi_{819}(274,·)$, $\chi_{819}(211,·)$, $\chi_{819}(22,·)$, $\chi_{819}(100,·)$, $\chi_{819}(352,·)$, $\chi_{819}(289,·)$, $\chi_{819}(802,·)$, $\chi_{819}(547,·)$, $\chi_{819}(484,·)$, $\chi_{819}(295,·)$, $\chi_{819}(235,·)$, $\chi_{819}(172,·)$, $\chi_{819}(625,·)$, $\chi_{819}(562,·)$, $\chi_{819}(757,·)$, $\chi_{819}(568,·)$, $\chi_{819}(508,·)$, $\chi_{819}(445,·)$, $\chi_{819}(373,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{3}$, $\frac{1}{24} a^{18} - \frac{1}{8} a^{16} + \frac{1}{12} a^{15} - \frac{1}{8} a^{14} + \frac{1}{12} a^{12} + \frac{1}{8} a^{11} - \frac{1}{8} a^{10} + \frac{5}{24} a^{9} - \frac{1}{4} a^{8} - \frac{3}{8} a^{7} - \frac{1}{12} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} + \frac{11}{24} a^{3} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{24} a^{19} - \frac{1}{8} a^{17} + \frac{1}{12} a^{16} - \frac{1}{8} a^{15} + \frac{1}{12} a^{13} + \frac{1}{8} a^{12} - \frac{1}{8} a^{11} + \frac{5}{24} a^{10} - \frac{1}{4} a^{9} + \frac{1}{8} a^{8} - \frac{1}{12} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} + \frac{11}{24} a^{4} - \frac{1}{2} a^{2} + \frac{1}{6} a$, $\frac{1}{24} a^{20} + \frac{1}{12} a^{17} - \frac{1}{24} a^{14} - \frac{1}{8} a^{13} + \frac{1}{8} a^{12} - \frac{1}{6} a^{11} - \frac{1}{8} a^{10} - \frac{1}{4} a^{9} - \frac{1}{12} a^{8} + \frac{1}{8} a^{7} + \frac{1}{4} a^{6} - \frac{1}{24} a^{5} - \frac{1}{8} a^{3} + \frac{1}{6} a^{2} - \frac{1}{2} a$, $\frac{1}{24} a^{21} + \frac{1}{24} a^{15} - \frac{1}{8} a^{14} - \frac{1}{8} a^{13} + \frac{1}{6} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{8} + \frac{1}{4} a^{7} - \frac{1}{8} a^{6} - \frac{1}{2} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{3}$, $\frac{1}{24} a^{22} + \frac{1}{24} a^{16} - \frac{1}{8} a^{15} - \frac{1}{8} a^{14} - \frac{1}{12} a^{13} + \frac{1}{8} a^{12} - \frac{1}{4} a^{11} + \frac{1}{8} a^{9} - \frac{1}{4} a^{8} + \frac{3}{8} a^{7} + \frac{1}{4} a^{6} - \frac{1}{8} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{3} a$, $\frac{1}{24} a^{23} + \frac{1}{24} a^{17} - \frac{1}{8} a^{16} - \frac{1}{8} a^{15} - \frac{1}{12} a^{14} - \frac{1}{8} a^{13} - \frac{1}{4} a^{11} + \frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{3}{8} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} + \frac{5}{12} a^{2}$, $\frac{1}{6096} a^{24} + \frac{13}{2032} a^{23} - \frac{61}{3048} a^{22} + \frac{2}{127} a^{21} - \frac{79}{6096} a^{20} + \frac{1}{6096} a^{19} - \frac{121}{6096} a^{18} + \frac{691}{6096} a^{17} + \frac{45}{508} a^{16} - \frac{15}{254} a^{15} - \frac{25}{3048} a^{14} - \frac{89}{1016} a^{13} - \frac{167}{3048} a^{12} + \frac{34}{381} a^{11} - \frac{595}{6096} a^{10} + \frac{521}{6096} a^{9} - \frac{239}{3048} a^{8} + \frac{17}{3048} a^{7} - \frac{5}{48} a^{6} - \frac{1415}{6096} a^{5} + \frac{2021}{6096} a^{4} - \frac{87}{2032} a^{3} + \frac{71}{1524} a^{2} + \frac{761}{1524} a + \frac{251}{762}$, $\frac{1}{1871472} a^{25} + \frac{13}{935736} a^{24} + \frac{4451}{1871472} a^{23} + \frac{611}{467868} a^{22} + \frac{14929}{1871472} a^{21} - \frac{4253}{233934} a^{20} + \frac{2473}{935736} a^{19} + \frac{19039}{935736} a^{18} + \frac{36979}{623824} a^{17} + \frac{13223}{116967} a^{16} - \frac{13055}{155956} a^{15} + \frac{3061}{38989} a^{14} + \frac{57913}{467868} a^{13} - \frac{3965}{116967} a^{12} + \frac{273511}{1871472} a^{11} - \frac{98615}{935736} a^{10} + \frac{44319}{623824} a^{9} + \frac{2486}{116967} a^{8} + \frac{150307}{1871472} a^{7} + \frac{71055}{155956} a^{6} + \frac{150797}{935736} a^{5} - \frac{36765}{311912} a^{4} - \frac{621925}{1871472} a^{3} - \frac{35849}{467868} a^{2} - \frac{36235}{155956} a + \frac{54395}{233934}$, $\frac{1}{214044343958580802294436213597101671102430918838318343426384} a^{26} + \frac{16397944620223731083155739058936248223205909293449145}{71348114652860267431478737865700557034143639612772781142128} a^{25} + \frac{1990882126419155695398429659181875452788253676353263165}{71348114652860267431478737865700557034143639612772781142128} a^{24} - \frac{491953650021808417247791412165946562701036575550760950415}{71348114652860267431478737865700557034143639612772781142128} a^{23} + \frac{2441367805138205965948826784922947195072433007081458789061}{214044343958580802294436213597101671102430918838318343426384} a^{22} + \frac{4449117363724745002353833191375165047172959627550640846359}{214044343958580802294436213597101671102430918838318343426384} a^{21} - \frac{247526684553597566120069826206389158016453406729927579005}{17837028663215066857869684466425139258535909903193195285532} a^{20} - \frac{1632765869280575012237754462343045227280199732203855728661}{107022171979290401147218106798550835551215459419159171713192} a^{19} - \frac{1028547438293340163727586933312283786834083147822741791553}{71348114652860267431478737865700557034143639612772781142128} a^{18} - \frac{10431000162317193849655760102442267641608529015983580157967}{214044343958580802294436213597101671102430918838318343426384} a^{17} + \frac{1253059853206262818070736418959785031702716528240370709631}{107022171979290401147218106798550835551215459419159171713192} a^{16} + \frac{481394163101998734545936227248592793260201597078189886081}{26755542994822600286804526699637708887803864854789792928298} a^{15} + \frac{3834618596977391896715166722267500571670446264231725757927}{107022171979290401147218106798550835551215459419159171713192} a^{14} + \frac{260459660591981749971259162812122579923444295739381590374}{13377771497411300143402263349818854443901932427394896464149} a^{13} - \frac{21786974872777466300733249588987460851567729988592757395393}{214044343958580802294436213597101671102430918838318343426384} a^{12} + \frac{26667534440963774373901285688802753150439771578607996577731}{214044343958580802294436213597101671102430918838318343426384} a^{11} + \frac{49499194253781204339537556559369673242725013206483635633719}{214044343958580802294436213597101671102430918838318343426384} a^{10} + \frac{16456399431470734569951347629490815107432607334265872599893}{71348114652860267431478737865700557034143639612772781142128} a^{9} - \frac{32396090369104066356226039296833656190442110103391868103769}{214044343958580802294436213597101671102430918838318343426384} a^{8} - \frac{18129725364734494273173249575339760198145960672421869306529}{214044343958580802294436213597101671102430918838318343426384} a^{7} - \frac{72127229606663800704538770851314880993400254882166217459}{17837028663215066857869684466425139258535909903193195285532} a^{6} + \frac{1889481174763927856430387978332257366269476742096082564873}{107022171979290401147218106798550835551215459419159171713192} a^{5} + \frac{32933469565356758891287543722563482919154548336033563699577}{214044343958580802294436213597101671102430918838318343426384} a^{4} + \frac{6684182086145207293443234600673780059821104235152560075511}{71348114652860267431478737865700557034143639612772781142128} a^{3} + \frac{8498190766351899502982869346212052128698640739826721421717}{53511085989645200573609053399275417775607729709579585856596} a^{2} + \frac{3613624388009575298762669518710062647202674088322469552769}{17837028663215066857869684466425139258535909903193195285532} a - \frac{12392495731036406311982807150170938132382460492519484415285}{26755542994822600286804526699637708887803864854789792928298}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1149187264584812300 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 27 |
| The 27 conjugacy class representatives for $C_3^3$ |
| Character table for $C_3^3$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{9}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{9}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{9}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $13$ | 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |