Normalized defining polynomial
\( x^{27} - 9 x^{26} - 63 x^{25} + 774 x^{24} + 834 x^{23} - 26013 x^{22} + 24482 x^{21} + 438771 x^{20} - 917742 x^{19} - 3954764 x^{18} + 12493773 x^{17} + 17637390 x^{16} - 89943576 x^{15} - 16499340 x^{14} + 367102377 x^{13} - 183437513 x^{12} - 838172511 x^{11} + 827108970 x^{10} + 967374964 x^{9} - 1484013339 x^{8} - 364627638 x^{7} + 1223353523 x^{6} - 171844968 x^{5} - 419177382 x^{4} + 123185675 x^{3} + 52146132 x^{2} - 17057376 x - 1145024 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(25450405558360134867067668541820239712260815470994619689=3^{36}\cdot 7^{18}\cdot 19^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $112.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1197=3^{2}\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1197}(64,·)$, $\chi_{1197}(1,·)$, $\chi_{1197}(961,·)$, $\chi_{1197}(520,·)$, $\chi_{1197}(1033,·)$, $\chi_{1197}(970,·)$, $\chi_{1197}(463,·)$, $\chi_{1197}(400,·)$, $\chi_{1197}(121,·)$, $\chi_{1197}(277,·)$, $\chi_{1197}(919,·)$, $\chi_{1197}(856,·)$, $\chi_{1197}(634,·)$, $\chi_{1197}(862,·)$, $\chi_{1197}(799,·)$, $\chi_{1197}(163,·)$, $\chi_{1197}(676,·)$, $\chi_{1197}(106,·)$, $\chi_{1197}(235,·)$, $\chi_{1197}(172,·)$, $\chi_{1197}(904,·)$, $\chi_{1197}(562,·)$, $\chi_{1197}(1075,·)$, $\chi_{1197}(457,·)$, $\chi_{1197}(505,·)$, $\chi_{1197}(58,·)$, $\chi_{1197}(571,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{7}$, $\frac{1}{4} a^{15} - \frac{1}{4} a$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{3}$, $\frac{1}{12} a^{18} - \frac{1}{12} a^{15} + \frac{1}{6} a^{9} + \frac{1}{4} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{3}$, $\frac{1}{12} a^{19} - \frac{1}{12} a^{16} + \frac{1}{6} a^{10} + \frac{1}{4} a^{5} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{3} a$, $\frac{1}{24} a^{20} - \frac{1}{24} a^{19} - \frac{1}{24} a^{18} + \frac{1}{12} a^{17} + \frac{1}{24} a^{16} - \frac{1}{12} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{6} a^{11} - \frac{1}{12} a^{10} + \frac{1}{6} a^{9} + \frac{1}{4} a^{7} - \frac{1}{8} a^{6} + \frac{7}{24} a^{5} + \frac{5}{24} a^{4} + \frac{1}{3} a^{3} + \frac{11}{24} a^{2} + \frac{5}{12} a - \frac{1}{3}$, $\frac{1}{24} a^{21} - \frac{1}{24} a^{18} - \frac{1}{8} a^{17} - \frac{1}{8} a^{16} + \frac{1}{12} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{3}{8} a^{7} - \frac{1}{3} a^{6} + \frac{1}{4} a^{5} - \frac{3}{8} a^{4} - \frac{7}{24} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{24} a^{22} - \frac{1}{24} a^{19} - \frac{1}{24} a^{18} - \frac{1}{8} a^{17} - \frac{1}{12} a^{15} + \frac{1}{12} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{12} a^{9} + \frac{1}{8} a^{8} - \frac{1}{3} a^{7} + \frac{1}{4} a^{6} - \frac{3}{8} a^{5} - \frac{1}{24} a^{4} + \frac{11}{24} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{3}$, $\frac{1}{48} a^{23} - \frac{1}{48} a^{22} + \frac{1}{48} a^{19} - \frac{1}{48} a^{18} + \frac{5}{48} a^{17} - \frac{1}{16} a^{16} + \frac{1}{12} a^{15} - \frac{1}{12} a^{14} + \frac{5}{24} a^{13} + \frac{1}{8} a^{12} + \frac{1}{24} a^{11} - \frac{11}{48} a^{9} + \frac{1}{48} a^{8} + \frac{5}{12} a^{7} + \frac{1}{8} a^{6} - \frac{5}{16} a^{5} - \frac{17}{48} a^{4} - \frac{13}{48} a^{3} + \frac{5}{48} a^{2} + \frac{1}{4} a + \frac{1}{3}$, $\frac{1}{6096} a^{24} + \frac{13}{2032} a^{23} + \frac{29}{1524} a^{22} + \frac{1}{1016} a^{21} + \frac{33}{2032} a^{20} + \frac{193}{6096} a^{19} - \frac{251}{6096} a^{18} + \frac{253}{2032} a^{17} + \frac{11}{254} a^{16} - \frac{11}{254} a^{15} - \frac{147}{1016} a^{14} - \frac{691}{3048} a^{13} + \frac{517}{3048} a^{12} - \frac{97}{508} a^{11} + \frac{471}{2032} a^{10} + \frac{161}{6096} a^{9} + \frac{83}{508} a^{8} + \frac{647}{1524} a^{7} + \frac{73}{2032} a^{6} - \frac{409}{2032} a^{5} - \frac{833}{6096} a^{4} - \frac{2213}{6096} a^{3} + \frac{17}{127} a^{2} + \frac{9}{127} a + \frac{190}{381}$, $\frac{1}{30480} a^{25} - \frac{131}{15240} a^{23} + \frac{181}{30480} a^{22} - \frac{389}{30480} a^{21} + \frac{71}{15240} a^{20} - \frac{539}{30480} a^{19} + \frac{7}{30480} a^{18} + \frac{1}{40} a^{17} + \frac{3791}{30480} a^{16} - \frac{373}{15240} a^{15} - \frac{413}{1905} a^{14} - \frac{2887}{15240} a^{13} + \frac{359}{7620} a^{12} + \frac{109}{10160} a^{11} - \frac{1057}{15240} a^{10} + \frac{47}{1524} a^{9} - \frac{6919}{30480} a^{8} - \frac{1907}{30480} a^{7} - \frac{967}{3810} a^{6} - \frac{2129}{30480} a^{5} + \frac{10081}{30480} a^{4} - \frac{1381}{3810} a^{3} - \frac{431}{10160} a^{2} + \frac{117}{508} a - \frac{806}{1905}$, $\frac{1}{461102283440826329125105804730742114349839725707591503358859929490917551560400} a^{26} + \frac{6328700473352100685524858829058371989258497936032443498610049753599924393}{461102283440826329125105804730742114349839725707591503358859929490917551560400} a^{25} + \frac{2692833215910590915086340445048451466579960870627341162880161286194918929}{38425190286735527427092150394228509529153310475632625279904994124243129296700} a^{24} + \frac{192222662007582242415806262058394207683030482516368469264954841104092610049}{92220456688165265825021160946148422869967945141518300671771985898183510312080} a^{23} - \frac{2485443267299266168521751981799617021348789596170934597577676984254392192263}{230551141720413164562552902365371057174919862853795751679429964745458775780200} a^{22} + \frac{1388456660468552170317943062448447644691889562097811530388849809365415772807}{92220456688165265825021160946148422869967945141518300671771985898183510312080} a^{21} + \frac{321016179724811903623265207476714183100072978680734126154847267551305558909}{153700761146942109708368601576914038116613241902530501119619976496972517186800} a^{20} + \frac{64909336739777640115720783318301912286245972714349744819654885237757209229}{9222045668816526582502116094614842286996794514151830067177198589818351031208} a^{19} + \frac{17662524235919692147947854206202519652454919227694388411501384780425039372633}{461102283440826329125105804730742114349839725707591503358859929490917551560400} a^{18} - \frac{48285311970241545612639651593611447844650249465428419195676372445649410312573}{461102283440826329125105804730742114349839725707591503358859929490917551560400} a^{17} - \frac{16879550704757359708177910340560492513925682002032871440026099096509766637041}{153700761146942109708368601576914038116613241902530501119619976496972517186800} a^{16} - \frac{9160927273462760237037894887802320057993561892336957287092349226394734294951}{76850380573471054854184300788457019058306620951265250559809988248486258593400} a^{15} + \frac{8974588980291162311695524595687797812985488657882109391567478583536311559227}{76850380573471054854184300788457019058306620951265250559809988248486258593400} a^{14} + \frac{5304236182874865734134898642948093980964954898935109248323371163374240914939}{76850380573471054854184300788457019058306620951265250559809988248486258593400} a^{13} + \frac{19046142120783688816432770930666624036017080552817784811378334861563547330839}{92220456688165265825021160946148422869967945141518300671771985898183510312080} a^{12} + \frac{6173656199626510018506929442145376436917994586597397117575386107697496947877}{461102283440826329125105804730742114349839725707591503358859929490917551560400} a^{11} + \frac{17296658540656211962903521792489442149834248897945978771935667043859650671567}{115275570860206582281276451182685528587459931426897875839714982372729387890100} a^{10} + \frac{16030739881858119498258760256751950377208973427279821238501370491652896278977}{153700761146942109708368601576914038116613241902530501119619976496972517186800} a^{9} + \frac{1581122769945230127679838871494043877253542242287338355285405191029808754636}{28818892715051645570319112795671382146864982856724468959928745593182346972525} a^{8} + \frac{114131307286544376921401498452045816261212014207865721510924191507121098915563}{461102283440826329125105804730742114349839725707591503358859929490917551560400} a^{7} - \frac{114427052590414345368073801620501912410334798311249773220798290975519444050737}{461102283440826329125105804730742114349839725707591503358859929490917551560400} a^{6} + \frac{21735327187702181873494042134508784625624021333304601479558529513200964078179}{76850380573471054854184300788457019058306620951265250559809988248486258593400} a^{5} - \frac{5225366210846473093000208687155705266656589721628396861960722540663965528779}{92220456688165265825021160946148422869967945141518300671771985898183510312080} a^{4} - \frac{33621630682311529880283476438105982211339644031020968883984814515351822503347}{461102283440826329125105804730742114349839725707591503358859929490917551560400} a^{3} - \frac{73969262095903779643939455663492739003247788561076561906961904677947209523023}{153700761146942109708368601576914038116613241902530501119619976496972517186800} a^{2} - \frac{2922385819238584990755946404588598565295919831030180671870282986165120886941}{28818892715051645570319112795671382146864982856724468959928745593182346972525} a + \frac{1931509170825896247466309763522596530106643871027200446050775709410483051044}{9606297571683881856773037598557127382288327618908156319976248531060782324175}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8214137232374256000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 27 |
| The 27 conjugacy class representatives for $C_3^3$ |
| Character table for $C_3^3$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{9}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{9}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{9}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $19$ | 19.9.6.2 | $x^{9} + 228 x^{6} + 16967 x^{3} + 438976$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 19.9.6.2 | $x^{9} + 228 x^{6} + 16967 x^{3} + 438976$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 19.9.6.2 | $x^{9} + 228 x^{6} + 16967 x^{3} + 438976$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |