Normalized defining polynomial
\( x^{27} - 9 x^{26} - 81 x^{25} + 933 x^{24} + 2007 x^{23} - 39807 x^{22} + 6678 x^{21} + 904248 x^{20} - 1262637 x^{19} - 11822536 x^{18} + 26844534 x^{17} + 89638254 x^{16} - 282749058 x^{15} - 371494179 x^{14} + 1710171315 x^{13} + 642477579 x^{12} - 6222060495 x^{11} + 686308842 x^{10} + 13853219952 x^{9} - 5005127394 x^{8} - 18850288581 x^{7} + 8789278983 x^{6} + 15172084575 x^{5} - 7014480921 x^{4} - 6523888629 x^{3} + 2434189824 x^{2} + 1093125672 x - 273101111 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21602961940568681480203888396858143586678350003185405580489=3^{66}\cdot 31^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $144.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(837=3^{3}\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{837}(1,·)$, $\chi_{837}(67,·)$, $\chi_{837}(769,·)$, $\chi_{837}(652,·)$, $\chi_{837}(397,·)$, $\chi_{837}(718,·)$, $\chi_{837}(466,·)$, $\chi_{837}(211,·)$, $\chi_{837}(532,·)$, $\chi_{837}(280,·)$, $\chi_{837}(25,·)$, $\chi_{837}(346,·)$, $\chi_{837}(94,·)$, $\chi_{837}(160,·)$, $\chi_{837}(676,·)$, $\chi_{837}(745,·)$, $\chi_{837}(583,·)$, $\chi_{837}(811,·)$, $\chi_{837}(559,·)$, $\chi_{837}(304,·)$, $\chi_{837}(625,·)$, $\chi_{837}(253,·)$, $\chi_{837}(373,·)$, $\chi_{837}(118,·)$, $\chi_{837}(439,·)$, $\chi_{837}(187,·)$, $\chi_{837}(490,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{17} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{17} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{20} - \frac{1}{2} a^{17} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{21} - \frac{1}{2} a^{17} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{22} - \frac{1}{2} a^{17} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{23} - \frac{1}{2} a^{17} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{218} a^{24} + \frac{16}{109} a^{23} - \frac{11}{109} a^{22} + \frac{22}{109} a^{21} - \frac{1}{109} a^{20} - \frac{8}{109} a^{19} + \frac{3}{218} a^{18} - \frac{2}{109} a^{17} + \frac{34}{109} a^{16} + \frac{46}{109} a^{15} + \frac{17}{218} a^{14} + \frac{27}{218} a^{13} + \frac{8}{109} a^{12} - \frac{33}{218} a^{11} - \frac{54}{109} a^{10} + \frac{33}{109} a^{8} + \frac{21}{218} a^{7} + \frac{25}{218} a^{6} + \frac{13}{109} a^{5} + \frac{51}{218} a^{4} + \frac{67}{218} a^{3} - \frac{17}{109} a^{2} - \frac{39}{218} a + \frac{4}{109}$, $\frac{1}{35534} a^{25} + \frac{28}{17767} a^{24} - \frac{4813}{35534} a^{23} + \frac{6383}{35534} a^{22} + \frac{1599}{35534} a^{21} + \frac{3751}{35534} a^{20} - \frac{817}{35534} a^{19} - \frac{3747}{35534} a^{18} + \frac{6403}{35534} a^{17} + \frac{4786}{17767} a^{16} + \frac{10073}{35534} a^{15} + \frac{3923}{35534} a^{14} - \frac{10345}{35534} a^{13} - \frac{8587}{35534} a^{12} - \frac{668}{17767} a^{11} - \frac{8369}{35534} a^{10} + \frac{6355}{17767} a^{9} + \frac{11633}{35534} a^{8} - \frac{3613}{35534} a^{7} + \frac{8597}{17767} a^{6} - \frac{1788}{17767} a^{5} + \frac{6087}{35534} a^{4} - \frac{6165}{35534} a^{3} - \frac{2444}{17767} a^{2} - \frac{16515}{35534} a + \frac{14253}{35534}$, $\frac{1}{519288556849520794439910280544612972418686550499739819404767010269083617781079564643357979786760521126} a^{26} + \frac{1613024432059029922260466685535903559325444081285011371852832999567659608046633077376859932770377}{259644278424760397219955140272306486209343275249869909702383505134541808890539782321678989893380260563} a^{25} - \frac{449607750727370238739433575000081587220516401520083818219177938235042219610488410158776095380547233}{519288556849520794439910280544612972418686550499739819404767010269083617781079564643357979786760521126} a^{24} - \frac{89534648660339376288556127865499045062105156503227189754397866990473716670487321277765004908482469145}{519288556849520794439910280544612972418686550499739819404767010269083617781079564643357979786760521126} a^{23} - \frac{59385475632362440257440989572984024071377123251120396093698794446704510817347543578190480737379992027}{519288556849520794439910280544612972418686550499739819404767010269083617781079564643357979786760521126} a^{22} + \frac{62114116704153225791106051392690950455793964289021276154975031208559806759164587142300101790762098457}{519288556849520794439910280544612972418686550499739819404767010269083617781079564643357979786760521126} a^{21} - \frac{6553808839970849382573548890063121838284165369464519945548548494782272170366566401813024916292939379}{519288556849520794439910280544612972418686550499739819404767010269083617781079564643357979786760521126} a^{20} + \frac{34534348273194249029289699177041892807014488040148182098170050993531336438844258021112603113327208888}{259644278424760397219955140272306486209343275249869909702383505134541808890539782321678989893380260563} a^{19} - \frac{30904713209460523522307135402088691353814936916686139547153760349258368695364445646165375065127279449}{259644278424760397219955140272306486209343275249869909702383505134541808890539782321678989893380260563} a^{18} + \frac{111417817846860230121752059227162101409558893839005388132102449364670882564535219810528276560120761639}{259644278424760397219955140272306486209343275249869909702383505134541808890539782321678989893380260563} a^{17} - \frac{182968312436103459835798616278213339643881217041501228381680965900000835862650689200157687079696584859}{519288556849520794439910280544612972418686550499739819404767010269083617781079564643357979786760521126} a^{16} - \frac{218437564222756898676330530750962451831670899029375667181905135600849863085886385181459240391609544049}{519288556849520794439910280544612972418686550499739819404767010269083617781079564643357979786760521126} a^{15} + \frac{41829072139295876141292447761178056692776542079237397908839307203158046390239447548726204506105710201}{519288556849520794439910280544612972418686550499739819404767010269083617781079564643357979786760521126} a^{14} + \frac{63035641593294271382589593905561773595502968360391621464583453201212832820260989137251029955002322431}{519288556849520794439910280544612972418686550499739819404767010269083617781079564643357979786760521126} a^{13} + \frac{45072722619623130306466263605890248989952238700339059353802751916306085541787085667513633915582647899}{259644278424760397219955140272306486209343275249869909702383505134541808890539782321678989893380260563} a^{12} + \frac{98230862179187964825657582463069506365272566199688612340544797355181271974492580266862038219532722815}{519288556849520794439910280544612972418686550499739819404767010269083617781079564643357979786760521126} a^{11} + \frac{49874437705286559342874575658737499222830742814730015664316370538770400877339375612905014231932103639}{259644278424760397219955140272306486209343275249869909702383505134541808890539782321678989893380260563} a^{10} + \frac{35258031629989440524465567344710469075432276541743516767301374199875783639686117107803248853843427942}{259644278424760397219955140272306486209343275249869909702383505134541808890539782321678989893380260563} a^{9} - \frac{65889498045120447964469289933794344288120726692580254423864016037725085665642372873919459404758245793}{519288556849520794439910280544612972418686550499739819404767010269083617781079564643357979786760521126} a^{8} - \frac{69062670771478165497544596466706128118475952176644351846392808054725613345129776230221300532179800109}{519288556849520794439910280544612972418686550499739819404767010269083617781079564643357979786760521126} a^{7} - \frac{185873860366418557878972509535768858869791351487368137268558415060161163350532799017249898668496408791}{519288556849520794439910280544612972418686550499739819404767010269083617781079564643357979786760521126} a^{6} - \frac{68376873303269583134111116134748557145595997146372710158576240415109046768029162191832886582497627118}{259644278424760397219955140272306486209343275249869909702383505134541808890539782321678989893380260563} a^{5} + \frac{234306478288601605442036859223498945568437790949994593863931412014236094421235576821552099262456587395}{519288556849520794439910280544612972418686550499739819404767010269083617781079564643357979786760521126} a^{4} - \frac{72058298184525204498571324789478347388144680829598213783832408831502987712895775420320167147441080961}{519288556849520794439910280544612972418686550499739819404767010269083617781079564643357979786760521126} a^{3} + \frac{845663884801450570805026436918940148987692216396077589491104623712604518346578613989761525248293437}{2382057600227159607522524222681710882654525461007980822957646836096713843032475067171366879755782207} a^{2} + \frac{34736870346392550179749793646010089961371322375298690106086267384794669617905808151780905579078991}{259644278424760397219955140272306486209343275249869909702383505134541808890539782321678989893380260563} a - \frac{62356404919309768705113224020168326319135674368252815723233064679588578674260439124074167617034035429}{259644278424760397219955140272306486209343275249869909702383505134541808890539782321678989893380260563}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 349009037595060140000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_9$ (as 27T2):
| An abelian group of order 27 |
| The 27 conjugacy class representatives for $C_3\times C_9$ |
| Character table for $C_3\times C_9$ is not computed |
Intermediate fields
| 3.3.961.1, \(\Q(\zeta_{9})^+\), 3.3.77841.1, 3.3.77841.2, 9.9.471655843734321.1, \(\Q(\zeta_{27})^+\), 9.9.27850805916667920729.2, 9.9.27850805916667920729.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{3}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{3}$ | R | ${\href{/LocalNumberField/37.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 31 | Data not computed | ||||||