Normalized defining polynomial
\( x^{27} - 1161 x^{25} + 599076 x^{23} - 181037439 x^{21} + 35538436395 x^{19} - 4751165869317 x^{17} + 441028857202632 x^{15} - 28446361289569764 x^{13} + 1255382839016013006 x^{11} - 36654079188553959990 x^{9} + 667535465692723883112 x^{7} - 6849824153642382573297 x^{5} + 32726937622958050072419 x^{3} - 46393131355621851201561 x - 13967167800173896001791 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(178578900240970840458250689871157457776932189215069373149025720786258346481=3^{94}\cdot 43^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $562.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3483=3^{4}\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3483}(1984,·)$, $\chi_{3483}(1,·)$, $\chi_{3483}(2371,·)$, $\chi_{3483}(388,·)$, $\chi_{3483}(2758,·)$, $\chi_{3483}(775,·)$, $\chi_{3483}(3145,·)$, $\chi_{3483}(1162,·)$, $\chi_{3483}(1549,·)$, $\chi_{3483}(79,·)$, $\chi_{3483}(1936,·)$, $\chi_{3483}(466,·)$, $\chi_{3483}(2323,·)$, $\chi_{3483}(853,·)$, $\chi_{3483}(2710,·)$, $\chi_{3483}(1240,·)$, $\chi_{3483}(3097,·)$, $\chi_{3483}(1627,·)$, $\chi_{3483}(2014,·)$, $\chi_{3483}(2401,·)$, $\chi_{3483}(2788,·)$, $\chi_{3483}(3175,·)$, $\chi_{3483}(49,·)$, $\chi_{3483}(436,·)$, $\chi_{3483}(823,·)$, $\chi_{3483}(1210,·)$, $\chi_{3483}(1597,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{43} a^{3}$, $\frac{1}{43} a^{4}$, $\frac{1}{43} a^{5}$, $\frac{1}{1849} a^{6}$, $\frac{1}{1849} a^{7}$, $\frac{1}{1849} a^{8}$, $\frac{1}{79507} a^{9}$, $\frac{1}{79507} a^{10}$, $\frac{1}{79507} a^{11}$, $\frac{1}{3418801} a^{12}$, $\frac{1}{3418801} a^{13}$, $\frac{1}{69452255135999} a^{14} + \frac{9714942}{69452255135999} a^{13} - \frac{14}{1615168724093} a^{12} - \frac{4405452}{1615168724093} a^{11} + \frac{77}{37562063351} a^{10} - \frac{7623373}{1615168724093} a^{9} - \frac{210}{873536357} a^{8} + \frac{2044256}{37562063351} a^{7} + \frac{294}{20314799} a^{6} - \frac{9156565}{873536357} a^{5} - \frac{8428}{20314799} a^{4} + \frac{3875557}{873536357} a^{3} + \frac{90601}{20314799} a^{2} - \frac{553651}{20314799} a - \frac{159014}{20314799}$, $\frac{1}{2986446970847957} a^{15} - \frac{15}{69452255135999} a^{13} + \frac{9714942}{69452255135999} a^{12} + \frac{90}{1615168724093} a^{11} + \frac{5309490}{1615168724093} a^{10} - \frac{275}{37562063351} a^{9} - \frac{3577906}{37562063351} a^{8} + \frac{450}{873536357} a^{7} - \frac{2178575}{37562063351} a^{6} - \frac{378}{20314799} a^{5} + \frac{3312089}{873536357} a^{4} + \frac{6020}{20314799} a^{3} - \frac{5778956}{20314799} a^{2} - \frac{27735}{20314799} a + \frac{9290884}{20314799}$, $\frac{1}{2986446970847957} a^{16} - \frac{7079320}{69452255135999} a^{13} - \frac{120}{1615168724093} a^{12} + \frac{172107}{1615168724093} a^{11} + \frac{880}{37562063351} a^{10} - \frac{4108166}{1615168724093} a^{9} - \frac{2700}{873536357} a^{8} + \frac{8170466}{37562063351} a^{7} + \frac{4032}{20314799} a^{6} + \frac{8167207}{873536357} a^{5} - \frac{120400}{20314799} a^{4} - \frac{7528562}{873536357} a^{3} + \frac{1331280}{20314799} a^{2} + \frac{986119}{20314799} a - \frac{2385210}{20314799}$, $\frac{1}{2986446970847957} a^{17} - \frac{136}{1615168724093} a^{13} - \frac{8557048}{69452255135999} a^{12} + \frac{1088}{37562063351} a^{11} - \frac{7757692}{1615168724093} a^{10} - \frac{3740}{873536357} a^{9} - \frac{7731480}{37562063351} a^{8} - \frac{8244527}{37562063351} a^{7} - \frac{7911925}{37562063351} a^{6} + \frac{9753311}{873536357} a^{5} - \frac{5133333}{873536357} a^{4} - \frac{9825959}{873536357} a^{3} - \frac{4691388}{20314799} a^{2} + \frac{1392133}{20314799} a - \frac{7033493}{20314799}$, $\frac{1}{128417219746462151} a^{18} + \frac{3405799}{69452255135999} a^{13} - \frac{816}{1615168724093} a^{12} + \frac{8704775}{1615168724093} a^{11} + \frac{6732}{37562063351} a^{10} - \frac{8455459}{1615168724093} a^{9} - \frac{22032}{873536357} a^{8} - \frac{8462117}{37562063351} a^{7} + \frac{2424531}{37562063351} a^{6} + \frac{6073886}{873536357} a^{5} - \frac{4633922}{873536357} a^{4} - \frac{5800410}{873536357} a^{3} - \frac{8433125}{20314799} a^{2} - \frac{7901588}{20314799} a - \frac{1311105}{20314799}$, $\frac{1}{128417219746462151} a^{19} - \frac{969}{1615168724093} a^{13} + \frac{7135242}{69452255135999} a^{12} + \frac{8721}{37562063351} a^{11} + \frac{9972296}{1615168724093} a^{10} + \frac{1818924}{1615168724093} a^{9} + \frac{9611966}{37562063351} a^{8} + \frac{5926865}{37562063351} a^{7} - \frac{6164819}{37562063351} a^{6} + \frac{4823221}{873536357} a^{5} + \frac{3137543}{873536357} a^{4} - \frac{7295977}{873536357} a^{3} + \frac{5100023}{20314799} a^{2} + \frac{3067864}{20314799} a - \frac{2504355}{20314799}$, $\frac{1}{128417219746462151} a^{20} + \frac{6938682}{69452255135999} a^{13} - \frac{4845}{37562063351} a^{12} - \frac{7787223}{1615168724093} a^{11} - \frac{2425232}{1615168724093} a^{10} + \frac{6132931}{1615168724093} a^{9} - \frac{4659763}{37562063351} a^{8} - \frac{8102274}{37562063351} a^{7} + \frac{3680830}{37562063351} a^{6} + \frac{8783707}{873536357} a^{5} + \frac{6627011}{873536357} a^{4} - \frac{3665532}{873536357} a^{3} - \frac{412883}{20314799} a^{2} + \frac{6131092}{20314799} a - \frac{3011864}{20314799}$, $\frac{1}{5521940449097872493} a^{21} - \frac{5985}{1615168724093} a^{13} + \frac{8095129}{69452255135999} a^{12} + \frac{57456}{37562063351} a^{11} - \frac{9258174}{1615168724093} a^{10} + \frac{532930}{1615168724093} a^{9} + \frac{1828262}{37562063351} a^{8} + \frac{7182037}{37562063351} a^{7} + \frac{9267945}{37562063351} a^{6} - \frac{6471529}{873536357} a^{5} - \frac{4817484}{873536357} a^{4} - \frac{165097}{873536357} a^{3} - \frac{1981417}{20314799} a^{2} + \frac{8398428}{20314799} a + \frac{1654899}{20314799}$, $\frac{1}{5521940449097872493} a^{22} - \frac{6263788}{69452255135999} a^{13} - \frac{8061968}{69452255135999} a^{12} - \frac{5425444}{1615168724093} a^{11} - \frac{586223}{1615168724093} a^{10} + \frac{6225879}{1615168724093} a^{9} - \frac{846527}{37562063351} a^{8} - \frac{3893677}{37562063351} a^{7} - \frac{2167144}{37562063351} a^{6} + \frac{3766142}{873536357} a^{5} - \frac{1404308}{873536357} a^{4} - \frac{5656503}{873536357} a^{3} + \frac{3629531}{20314799} a^{2} + \frac{4801980}{20314799} a - \frac{9042784}{20314799}$, $\frac{1}{5521940449097872493} a^{23} - \frac{1272604}{69452255135999} a^{13} - \frac{2079065}{69452255135999} a^{12} - \frac{7588759}{1615168724093} a^{11} + \frac{4218168}{1615168724093} a^{10} + \frac{6479051}{1615168724093} a^{9} - \frac{9498901}{37562063351} a^{8} + \frac{558502}{37562063351} a^{7} + \frac{7760455}{37562063351} a^{6} + \frac{8958971}{873536357} a^{5} + \frac{9101802}{873536357} a^{4} + \frac{4361131}{873536357} a^{3} - \frac{3966296}{20314799} a^{2} - \frac{1880683}{20314799} a + \frac{4609938}{20314799}$, $\frac{1}{237443439311208517199} a^{24} + \frac{4019853}{69452255135999} a^{13} - \frac{5090416}{69452255135999} a^{12} - \frac{5544828}{1615168724093} a^{11} - \frac{10046932}{1615168724093} a^{10} + \frac{119926}{37562063351} a^{9} - \frac{9283148}{37562063351} a^{8} - \frac{3245471}{37562063351} a^{7} + \frac{7897931}{37562063351} a^{6} + \frac{5153482}{873536357} a^{5} + \frac{9312651}{873536357} a^{4} - \frac{8641263}{873536357} a^{3} - \frac{693014}{20314799} a^{2} + \frac{7659145}{20314799} a + \frac{6943776}{20314799}$, $\frac{1}{237443439311208517199} a^{25} - \frac{2421116}{69452255135999} a^{13} + \frac{7840409}{69452255135999} a^{12} - \frac{4118234}{1615168724093} a^{11} + \frac{1616880}{1615168724093} a^{10} - \frac{8031916}{1615168724093} a^{9} - \frac{6518694}{37562063351} a^{8} - \frac{428550}{37562063351} a^{7} + \frac{4225851}{37562063351} a^{6} - \frac{4673720}{873536357} a^{5} + \frac{7614260}{873536357} a^{4} - \frac{3342412}{873536357} a^{3} + \frac{8673964}{20314799} a^{2} - \frac{5542165}{20314799} a + \frac{7754407}{20314799}$, $\frac{1}{237443439311208517199} a^{26} + \frac{6888707}{69452255135999} a^{13} - \frac{9411974}{69452255135999} a^{12} - \frac{6325793}{1615168724093} a^{11} + \frac{4252354}{1615168724093} a^{10} + \frac{5334923}{1615168724093} a^{9} - \frac{4382306}{37562063351} a^{8} + \frac{9395981}{37562063351} a^{7} + \frac{479513}{37562063351} a^{6} - \frac{5189158}{873536357} a^{5} - \frac{8981667}{873536357} a^{4} - \frac{1819629}{873536357} a^{3} - \frac{9211051}{20314799} a^{2} + \frac{6157107}{20314799} a - \frac{5583775}{20314799}$
Class group and class number
Not computed
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 27 |
| The 27 conjugacy class representatives for $C_{27}$ |
| Character table for $C_{27}$ is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $27$ | R | $27$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{3}$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{3}$ | $27$ | R | $27$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{9}$ | $27$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 43 | Data not computed | ||||||