Normalized defining polynomial
\( x^{27} - 1161 x^{25} + 599076 x^{23} - 181037439 x^{21} + 35538436395 x^{19} - 4751165869317 x^{17} + 441028857202632 x^{15} - 28446361289569764 x^{13} + 1255382839016013006 x^{11} - 36654079188553959990 x^{9} + 667535465692723883112 x^{7} - 6849824153642382573297 x^{5} + 32726937622958050072419 x^{3} - 46393131355621851201561 x - 22298685735659897360231 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(178578900240970840458250689871157457776932189215069373149025720786258346481=3^{94}\cdot 43^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $562.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3483=3^{4}\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3483}(1,·)$, $\chi_{3483}(388,·)$, $\chi_{3483}(775,·)$, $\chi_{3483}(1162,·)$, $\chi_{3483}(2500,·)$, $\chi_{3483}(1549,·)$, $\chi_{3483}(1936,·)$, $\chi_{3483}(337,·)$, $\chi_{3483}(2323,·)$, $\chi_{3483}(724,·)$, $\chi_{3483}(2710,·)$, $\chi_{3483}(1111,·)$, $\chi_{3483}(3097,·)$, $\chi_{3483}(1498,·)$, $\chi_{3483}(1885,·)$, $\chi_{3483}(2272,·)$, $\chi_{3483}(2659,·)$, $\chi_{3483}(3046,·)$, $\chi_{3483}(2113,·)$, $\chi_{3483}(3433,·)$, $\chi_{3483}(2887,·)$, $\chi_{3483}(178,·)$, $\chi_{3483}(565,·)$, $\chi_{3483}(952,·)$, $\chi_{3483}(1339,·)$, $\chi_{3483}(3274,·)$, $\chi_{3483}(1726,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{43} a^{3}$, $\frac{1}{43} a^{4}$, $\frac{1}{43} a^{5}$, $\frac{1}{1849} a^{6}$, $\frac{1}{1849} a^{7}$, $\frac{1}{1849} a^{8}$, $\frac{1}{79507} a^{9}$, $\frac{1}{79507} a^{10}$, $\frac{1}{79507} a^{11}$, $\frac{1}{3418801} a^{12}$, $\frac{1}{3418801} a^{13}$, $\frac{1}{12778517454919} a^{14} - \frac{1787459}{12778517454919} a^{13} - \frac{14}{297174824533} a^{12} + \frac{810653}{297174824533} a^{11} + \frac{77}{6911042431} a^{10} + \frac{1382398}{297174824533} a^{9} - \frac{210}{160721917} a^{8} - \frac{327580}{6911042431} a^{7} + \frac{294}{3737719} a^{6} + \frac{1628083}{160721917} a^{5} - \frac{8428}{3737719} a^{4} + \frac{504546}{160721917} a^{3} + \frac{90601}{3737719} a^{2} - \frac{72078}{3737719} a - \frac{159014}{3737719}$, $\frac{1}{549476250561517} a^{15} - \frac{15}{12778517454919} a^{13} - \frac{1787459}{12778517454919} a^{12} + \frac{90}{297174824533} a^{11} - \frac{976806}{297174824533} a^{10} - \frac{275}{6911042431} a^{9} + \frac{657908}{6911042431} a^{8} + \frac{450}{160721917} a^{7} + \frac{435687}{6911042431} a^{6} - \frac{378}{3737719} a^{5} - \frac{642064}{160721917} a^{4} + \frac{6020}{3737719} a^{3} + \frac{1074472}{3737719} a^{2} - \frac{27735}{3737719} a - \frac{1736190}{3737719}$, $\frac{1}{549476250561517} a^{16} + \frac{1302408}{12778517454919} a^{13} - \frac{120}{297174824533} a^{12} - \frac{30168}{297174824533} a^{11} + \frac{880}{6911042431} a^{10} + \frac{435667}{297174824533} a^{9} - \frac{2700}{160721917} a^{8} - \frac{740294}{6911042431} a^{7} - \frac{20270}{6911042431} a^{6} + \frac{1352867}{160721917} a^{5} - \frac{1439481}{160721917} a^{4} + \frac{1442420}{160721917} a^{3} + \frac{1331280}{3737719} a^{2} + \frac{920359}{3737719} a + \frac{1352509}{3737719}$, $\frac{1}{549476250561517} a^{17} - \frac{136}{297174824533} a^{13} + \frac{1569121}{12778517454919} a^{12} + \frac{1088}{6911042431} a^{11} + \frac{1490505}{297174824533} a^{10} + \frac{560178}{297174824533} a^{9} + \frac{1139972}{6911042431} a^{8} + \frac{857115}{6911042431} a^{7} + \frac{299509}{6911042431} a^{6} + \frac{651669}{160721917} a^{5} + \frac{155932}{160721917} a^{4} + \frac{1072158}{160721917} a^{3} + \frac{1241981}{3737719} a^{2} - \frac{234071}{3737719} a + \frac{1571360}{3737719}$, $\frac{1}{23627478774145231} a^{18} - \frac{627740}{12778517454919} a^{13} - \frac{816}{297174824533} a^{12} - \frac{1587328}{297174824533} a^{11} + \frac{6732}{6911042431} a^{10} - \frac{1477569}{297174824533} a^{9} - \frac{22032}{160721917} a^{8} + \frac{1264874}{6911042431} a^{7} - \frac{172295}{6911042431} a^{6} + \frac{17006}{1474513} a^{5} - \frac{410892}{160721917} a^{4} - \frac{1156424}{160721917} a^{3} + \frac{668517}{3737719} a^{2} - \frac{204458}{3737719} a + \frac{800410}{3737719}$, $\frac{1}{23627478774145231} a^{19} - \frac{969}{297174824533} a^{13} - \frac{1366023}{12778517454919} a^{12} + \frac{8721}{6911042431} a^{11} - \frac{1202193}{297174824533} a^{10} + \frac{678031}{297174824533} a^{9} - \frac{845322}{6911042431} a^{8} - \frac{892991}{6911042431} a^{7} - \frac{1823799}{6911042431} a^{6} + \frac{429920}{160721917} a^{5} - \frac{376449}{160721917} a^{4} - \frac{544384}{160721917} a^{3} + \frac{534978}{3737719} a^{2} - \frac{354815}{3737719} a + \frac{75254}{3737719}$, $\frac{1}{23627478774145231} a^{20} - \frac{1631382}{12778517454919} a^{13} - \frac{1482967}{12778517454919} a^{12} - \frac{1490245}{297174824533} a^{11} + \frac{341865}{297174824533} a^{10} - \frac{581699}{297174824533} a^{9} + \frac{363618}{6911042431} a^{8} - \frac{949871}{6911042431} a^{7} - \frac{347973}{6911042431} a^{6} + \frac{1095781}{160721917} a^{5} - \frac{447092}{160721917} a^{4} - \frac{1173453}{160721917} a^{3} - \frac{379138}{3737719} a^{2} - \frac{1810415}{3737719} a + \frac{1339449}{3737719}$, $\frac{1}{1015981587288244933} a^{21} - \frac{5985}{297174824533} a^{13} + \frac{1834440}{12778517454919} a^{12} - \frac{1267111}{297174824533} a^{11} - \frac{20258}{6911042431} a^{10} + \frac{1648321}{297174824533} a^{9} + \frac{388601}{6911042431} a^{8} + \frac{72643}{6911042431} a^{7} + \frac{293583}{6911042431} a^{6} + \frac{1778758}{160721917} a^{5} + \frac{1579568}{160721917} a^{4} - \frac{1468791}{160721917} a^{3} - \frac{465548}{3737719} a^{2} - \frac{1750342}{3737719} a - \frac{172170}{3737719}$, $\frac{1}{1015981587288244933} a^{22} - \frac{1123737}{12778517454919} a^{13} - \frac{101219}{12778517454919} a^{12} + \frac{208017}{297174824533} a^{11} + \frac{1550794}{297174824533} a^{10} + \frac{1488680}{297174824533} a^{9} + \frac{1018211}{6911042431} a^{8} + \frac{194728}{6911042431} a^{7} - \frac{1367826}{6911042431} a^{6} - \frac{1419867}{160721917} a^{5} - \frac{648004}{160721917} a^{4} + \frac{1485520}{160721917} a^{3} - \frac{1021109}{3737719} a^{2} + \frac{493537}{3737719} a + \frac{1237361}{3737719}$, $\frac{1}{1015981587288244933} a^{23} + \frac{1324222}{12778517454919} a^{13} + \frac{1506758}{12778517454919} a^{12} + \frac{1708656}{297174824533} a^{11} - \frac{586237}{297174824533} a^{10} - \frac{1370414}{297174824533} a^{9} + \frac{756703}{6911042431} a^{8} + \frac{1596867}{6911042431} a^{7} - \frac{1442201}{6911042431} a^{6} + \frac{1499766}{160721917} a^{5} + \frac{1613136}{160721917} a^{4} - \frac{379486}{160721917} a^{3} + \frac{461633}{3737719} a^{2} + \frac{892605}{3737719} a - \frac{783085}{3737719}$, $\frac{1}{43687208253394532119} a^{24} + \frac{985279}{12778517454919} a^{13} + \frac{1559169}{12778517454919} a^{12} + \frac{1454139}{297174824533} a^{11} - \frac{817780}{297174824533} a^{10} - \frac{845971}{297174824533} a^{9} - \frac{640542}{6911042431} a^{8} + \frac{144698}{6911042431} a^{7} - \frac{1809076}{6911042431} a^{6} - \frac{1807492}{160721917} a^{5} + \frac{1356807}{160721917} a^{4} - \frac{985630}{160721917} a^{3} + \frac{309547}{3737719} a^{2} + \frac{436894}{3737719} a + \frac{561066}{3737719}$, $\frac{1}{43687208253394532119} a^{25} + \frac{1461372}{12778517454919} a^{13} + \frac{1565110}{12778517454919} a^{12} + \frac{453581}{297174824533} a^{11} - \frac{76053}{297174824533} a^{10} - \frac{1868401}{297174824533} a^{9} + \frac{1442848}{6911042431} a^{8} + \frac{112375}{6911042431} a^{7} + \frac{1113412}{6911042431} a^{6} - \frac{1507839}{160721917} a^{5} + \frac{31297}{160721917} a^{4} + \frac{146030}{160721917} a^{3} + \frac{1117092}{3737719} a^{2} + \frac{839828}{3737719} a - \frac{812417}{3737719}$, $\frac{1}{43687208253394532119} a^{26} + \frac{41826}{297174824533} a^{13} - \frac{1540352}{12778517454919} a^{12} + \frac{627362}{297174824533} a^{11} - \frac{124988}{297174824533} a^{10} + \frac{513495}{297174824533} a^{9} - \frac{1584254}{6911042431} a^{8} + \frac{1516809}{6911042431} a^{7} - \frac{824745}{6911042431} a^{6} - \frac{1062286}{160721917} a^{5} - \frac{1413949}{160721917} a^{4} - \frac{1338530}{160721917} a^{3} + \frac{295393}{3737719} a^{2} - \frac{700540}{3737719} a + \frac{879259}{3737719}$
Class group and class number
Not computed
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 27 |
| The 27 conjugacy class representatives for $C_{27}$ |
| Character table for $C_{27}$ is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $27$ | R | $27$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{3}$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{3}$ | $27$ | R | $27$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{27}$ | $27$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 43 | Data not computed | ||||||