Properties

Label 27.27.171...049.1
Degree $27$
Signature $[27, 0]$
Discriminant $1.710\times 10^{60}$
Root discriminant \(170.16\)
Ramified primes $3,19$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_3^4.C_3\wr C_3$ (as 27T692)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^27 - 252*x^25 - 189*x^24 + 26676*x^23 + 37278*x^22 - 1542249*x^21 - 2997459*x^20 + 53109180*x^19 + 127595412*x^18 - 1115642646*x^17 - 3116503386*x^16 + 14106344724*x^15 + 44288457588*x^14 - 103097199771*x^13 - 357917273712*x^12 + 414062657892*x^11 + 1585147569417*x^10 - 865139058768*x^9 - 3663417923046*x^8 + 907297669062*x^7 + 4289785218828*x^6 - 435357630576*x^5 - 2278964378115*x^4 + 94666216968*x^3 + 374720442165*x^2 - 29638905030*x - 7668478603)
 
gp: K = bnfinit(y^27 - 252*y^25 - 189*y^24 + 26676*y^23 + 37278*y^22 - 1542249*y^21 - 2997459*y^20 + 53109180*y^19 + 127595412*y^18 - 1115642646*y^17 - 3116503386*y^16 + 14106344724*y^15 + 44288457588*y^14 - 103097199771*y^13 - 357917273712*y^12 + 414062657892*y^11 + 1585147569417*y^10 - 865139058768*y^9 - 3663417923046*y^8 + 907297669062*y^7 + 4289785218828*y^6 - 435357630576*y^5 - 2278964378115*y^4 + 94666216968*y^3 + 374720442165*y^2 - 29638905030*y - 7668478603, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^27 - 252*x^25 - 189*x^24 + 26676*x^23 + 37278*x^22 - 1542249*x^21 - 2997459*x^20 + 53109180*x^19 + 127595412*x^18 - 1115642646*x^17 - 3116503386*x^16 + 14106344724*x^15 + 44288457588*x^14 - 103097199771*x^13 - 357917273712*x^12 + 414062657892*x^11 + 1585147569417*x^10 - 865139058768*x^9 - 3663417923046*x^8 + 907297669062*x^7 + 4289785218828*x^6 - 435357630576*x^5 - 2278964378115*x^4 + 94666216968*x^3 + 374720442165*x^2 - 29638905030*x - 7668478603);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^27 - 252*x^25 - 189*x^24 + 26676*x^23 + 37278*x^22 - 1542249*x^21 - 2997459*x^20 + 53109180*x^19 + 127595412*x^18 - 1115642646*x^17 - 3116503386*x^16 + 14106344724*x^15 + 44288457588*x^14 - 103097199771*x^13 - 357917273712*x^12 + 414062657892*x^11 + 1585147569417*x^10 - 865139058768*x^9 - 3663417923046*x^8 + 907297669062*x^7 + 4289785218828*x^6 - 435357630576*x^5 - 2278964378115*x^4 + 94666216968*x^3 + 374720442165*x^2 - 29638905030*x - 7668478603)
 

\( x^{27} - 252 x^{25} - 189 x^{24} + 26676 x^{23} + 37278 x^{22} - 1542249 x^{21} - 2997459 x^{20} + \cdots - 7668478603 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $27$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[27, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(1710104639727978317616739861182036266774010607729523946446049\) \(\medspace = 3^{78}\cdot 19^{18}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(170.16\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(3\), \(19\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $3$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{19}a^{12}-\frac{5}{19}a^{10}+\frac{1}{19}a^{9}$, $\frac{1}{19}a^{13}-\frac{5}{19}a^{11}+\frac{1}{19}a^{10}$, $\frac{1}{19}a^{14}+\frac{1}{19}a^{11}-\frac{6}{19}a^{10}+\frac{5}{19}a^{9}$, $\frac{1}{361}a^{15}-\frac{5}{361}a^{13}+\frac{1}{361}a^{12}+\frac{9}{19}a^{11}+\frac{6}{19}a^{10}+\frac{7}{19}a^{9}-\frac{4}{19}a^{8}-\frac{3}{19}a^{7}-\frac{2}{19}a^{6}+\frac{3}{19}a^{5}-\frac{7}{19}a^{4}+\frac{3}{19}a^{3}$, $\frac{1}{361}a^{16}-\frac{5}{361}a^{14}+\frac{1}{361}a^{13}+\frac{6}{19}a^{11}-\frac{5}{19}a^{10}+\frac{6}{19}a^{9}-\frac{3}{19}a^{8}-\frac{2}{19}a^{7}+\frac{3}{19}a^{6}-\frac{7}{19}a^{5}+\frac{3}{19}a^{4}$, $\frac{1}{361}a^{17}+\frac{1}{361}a^{14}-\frac{6}{361}a^{13}+\frac{5}{361}a^{12}-\frac{3}{19}a^{11}-\frac{9}{19}a^{10}+\frac{7}{19}a^{9}-\frac{3}{19}a^{8}+\frac{7}{19}a^{7}+\frac{2}{19}a^{6}-\frac{1}{19}a^{5}+\frac{3}{19}a^{4}-\frac{4}{19}a^{3}$, $\frac{1}{6859}a^{18}-\frac{5}{6859}a^{16}+\frac{1}{6859}a^{15}+\frac{9}{361}a^{14}+\frac{6}{361}a^{13}+\frac{7}{361}a^{12}-\frac{99}{361}a^{11}+\frac{111}{361}a^{10}-\frac{59}{361}a^{9}+\frac{3}{361}a^{8}+\frac{12}{361}a^{7}+\frac{98}{361}a^{6}+\frac{8}{19}a^{5}-\frac{1}{19}a^{4}+\frac{3}{19}a^{3}$, $\frac{1}{6859}a^{19}-\frac{5}{6859}a^{17}+\frac{1}{6859}a^{16}+\frac{6}{361}a^{14}-\frac{5}{361}a^{13}+\frac{6}{361}a^{12}-\frac{60}{361}a^{11}+\frac{93}{361}a^{10}+\frac{3}{361}a^{9}-\frac{26}{361}a^{8}-\frac{111}{361}a^{7}+\frac{7}{19}a^{6}-\frac{9}{19}a^{5}+\frac{9}{19}a^{4}-\frac{8}{19}a^{3}$, $\frac{1}{6859}a^{20}+\frac{1}{6859}a^{17}-\frac{6}{6859}a^{16}+\frac{5}{6859}a^{15}-\frac{3}{361}a^{14}-\frac{9}{361}a^{13}+\frac{7}{361}a^{12}+\frac{111}{361}a^{11}+\frac{102}{361}a^{10}-\frac{74}{361}a^{9}-\frac{58}{361}a^{8}+\frac{136}{361}a^{7}-\frac{118}{361}a^{6}+\frac{5}{19}a^{5}-\frac{6}{19}a^{4}-\frac{3}{19}a^{3}$, $\frac{1}{130321}a^{21}-\frac{5}{130321}a^{19}+\frac{1}{130321}a^{18}+\frac{9}{6859}a^{17}+\frac{6}{6859}a^{16}+\frac{7}{6859}a^{15}-\frac{99}{6859}a^{14}+\frac{111}{6859}a^{13}-\frac{59}{6859}a^{12}+\frac{3252}{6859}a^{11}-\frac{710}{6859}a^{10}-\frac{263}{6859}a^{9}+\frac{27}{361}a^{8}-\frac{115}{361}a^{7}+\frac{98}{361}a^{6}+\frac{9}{19}a^{5}+\frac{6}{19}a^{4}-\frac{8}{19}a^{3}$, $\frac{1}{130321}a^{22}-\frac{5}{130321}a^{20}+\frac{1}{130321}a^{19}+\frac{6}{6859}a^{17}-\frac{5}{6859}a^{16}+\frac{6}{6859}a^{15}-\frac{60}{6859}a^{14}+\frac{93}{6859}a^{13}+\frac{3}{6859}a^{12}+\frac{696}{6859}a^{11}-\frac{1555}{6859}a^{10}+\frac{102}{361}a^{9}-\frac{66}{361}a^{8}+\frac{123}{361}a^{7}-\frac{27}{361}a^{6}-\frac{8}{19}a^{5}+\frac{7}{19}a^{4}-\frac{9}{19}a^{3}$, $\frac{1}{130321}a^{23}+\frac{1}{130321}a^{20}-\frac{6}{130321}a^{19}+\frac{5}{130321}a^{18}-\frac{3}{6859}a^{17}-\frac{9}{6859}a^{16}+\frac{7}{6859}a^{15}+\frac{111}{6859}a^{14}+\frac{102}{6859}a^{13}-\frac{74}{6859}a^{12}-\frac{3307}{6859}a^{11}-\frac{2391}{6859}a^{10}+\frac{1326}{6859}a^{9}+\frac{43}{361}a^{8}+\frac{70}{361}a^{7}-\frac{136}{361}a^{6}-\frac{7}{19}a^{5}+\frac{4}{19}a^{4}+\frac{5}{19}a^{3}$, $\frac{1}{2476099}a^{24}-\frac{5}{2476099}a^{22}+\frac{1}{2476099}a^{21}+\frac{9}{130321}a^{20}+\frac{6}{130321}a^{19}+\frac{7}{130321}a^{18}-\frac{99}{130321}a^{17}+\frac{111}{130321}a^{16}-\frac{59}{130321}a^{15}+\frac{3252}{130321}a^{14}-\frac{710}{130321}a^{13}-\frac{263}{130321}a^{12}-\frac{695}{6859}a^{11}-\frac{115}{6859}a^{10}+\frac{98}{6859}a^{9}+\frac{123}{361}a^{8}+\frac{25}{361}a^{7}-\frac{46}{361}a^{6}-\frac{8}{19}a^{5}+\frac{9}{19}a^{4}-\frac{7}{19}a^{3}$, $\frac{1}{2476099}a^{25}-\frac{5}{2476099}a^{23}+\frac{1}{2476099}a^{22}+\frac{6}{130321}a^{20}-\frac{5}{130321}a^{19}+\frac{6}{130321}a^{18}-\frac{60}{130321}a^{17}+\frac{93}{130321}a^{16}+\frac{3}{130321}a^{15}+\frac{696}{130321}a^{14}-\frac{1555}{130321}a^{13}+\frac{102}{6859}a^{12}-\frac{427}{6859}a^{11}-\frac{3126}{6859}a^{10}+\frac{2139}{6859}a^{9}-\frac{122}{361}a^{8}+\frac{140}{361}a^{7}+\frac{143}{361}a^{6}+\frac{4}{19}a^{5}-\frac{9}{19}a^{4}+\frac{8}{19}a^{3}$, $\frac{1}{15\!\cdots\!71}a^{26}-\frac{19\!\cdots\!63}{15\!\cdots\!71}a^{25}+\frac{25\!\cdots\!36}{15\!\cdots\!71}a^{24}-\frac{53\!\cdots\!15}{15\!\cdots\!71}a^{23}+\frac{32\!\cdots\!56}{15\!\cdots\!71}a^{22}-\frac{16\!\cdots\!31}{15\!\cdots\!71}a^{21}+\frac{47\!\cdots\!81}{81\!\cdots\!09}a^{20}-\frac{54\!\cdots\!72}{81\!\cdots\!09}a^{19}-\frac{39\!\cdots\!90}{81\!\cdots\!09}a^{18}+\frac{77\!\cdots\!25}{81\!\cdots\!09}a^{17}+\frac{83\!\cdots\!19}{81\!\cdots\!09}a^{16}-\frac{46\!\cdots\!43}{81\!\cdots\!09}a^{15}+\frac{77\!\cdots\!23}{81\!\cdots\!09}a^{14}-\frac{12\!\cdots\!07}{81\!\cdots\!09}a^{13}-\frac{72\!\cdots\!27}{81\!\cdots\!09}a^{12}-\frac{90\!\cdots\!16}{43\!\cdots\!11}a^{11}+\frac{17\!\cdots\!34}{43\!\cdots\!11}a^{10}-\frac{70\!\cdots\!58}{43\!\cdots\!11}a^{9}-\frac{16\!\cdots\!02}{11\!\cdots\!51}a^{8}-\frac{25\!\cdots\!27}{22\!\cdots\!69}a^{7}+\frac{45\!\cdots\!09}{11\!\cdots\!51}a^{6}-\frac{17\!\cdots\!80}{11\!\cdots\!51}a^{5}-\frac{20\!\cdots\!55}{11\!\cdots\!51}a^{4}+\frac{47\!\cdots\!89}{11\!\cdots\!51}a^{3}+\frac{26\!\cdots\!95}{62\!\cdots\!29}a^{2}-\frac{30\!\cdots\!21}{62\!\cdots\!29}a+\frac{18\!\cdots\!10}{62\!\cdots\!29}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $26$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{11\!\cdots\!34}{49\!\cdots\!69}a^{26}+\frac{27\!\cdots\!90}{49\!\cdots\!69}a^{25}+\frac{29\!\cdots\!98}{49\!\cdots\!69}a^{24}+\frac{15\!\cdots\!22}{49\!\cdots\!69}a^{23}-\frac{31\!\cdots\!81}{49\!\cdots\!69}a^{22}-\frac{36\!\cdots\!21}{49\!\cdots\!69}a^{21}+\frac{94\!\cdots\!54}{26\!\cdots\!51}a^{20}+\frac{16\!\cdots\!41}{26\!\cdots\!51}a^{19}-\frac{32\!\cdots\!87}{26\!\cdots\!51}a^{18}-\frac{69\!\cdots\!54}{26\!\cdots\!51}a^{17}+\frac{67\!\cdots\!72}{26\!\cdots\!51}a^{16}+\frac{16\!\cdots\!94}{26\!\cdots\!51}a^{15}-\frac{83\!\cdots\!62}{26\!\cdots\!51}a^{14}-\frac{23\!\cdots\!43}{26\!\cdots\!51}a^{13}+\frac{59\!\cdots\!97}{26\!\cdots\!51}a^{12}+\frac{92\!\cdots\!96}{13\!\cdots\!29}a^{11}-\frac{11\!\cdots\!14}{13\!\cdots\!29}a^{10}-\frac{36\!\cdots\!63}{13\!\cdots\!29}a^{9}+\frac{12\!\cdots\!19}{72\!\cdots\!91}a^{8}+\frac{33\!\cdots\!93}{72\!\cdots\!91}a^{7}-\frac{13\!\cdots\!31}{72\!\cdots\!91}a^{6}-\frac{13\!\cdots\!46}{38\!\cdots\!89}a^{5}+\frac{41\!\cdots\!86}{38\!\cdots\!89}a^{4}+\frac{32\!\cdots\!79}{38\!\cdots\!89}a^{3}-\frac{68\!\cdots\!82}{20\!\cdots\!31}a^{2}-\frac{12\!\cdots\!95}{20\!\cdots\!31}a+\frac{34\!\cdots\!20}{20\!\cdots\!31}$, $\frac{16\!\cdots\!67}{49\!\cdots\!69}a^{26}-\frac{56\!\cdots\!09}{49\!\cdots\!69}a^{25}-\frac{41\!\cdots\!31}{49\!\cdots\!69}a^{24}-\frac{17\!\cdots\!99}{49\!\cdots\!69}a^{23}+\frac{44\!\cdots\!89}{49\!\cdots\!69}a^{22}+\frac{47\!\cdots\!92}{49\!\cdots\!69}a^{21}-\frac{13\!\cdots\!56}{26\!\cdots\!51}a^{20}-\frac{21\!\cdots\!87}{26\!\cdots\!51}a^{19}+\frac{45\!\cdots\!54}{26\!\cdots\!51}a^{18}+\frac{93\!\cdots\!38}{26\!\cdots\!51}a^{17}-\frac{95\!\cdots\!14}{26\!\cdots\!51}a^{16}-\frac{22\!\cdots\!82}{26\!\cdots\!51}a^{15}+\frac{12\!\cdots\!60}{26\!\cdots\!51}a^{14}+\frac{31\!\cdots\!10}{26\!\cdots\!51}a^{13}-\frac{87\!\cdots\!47}{26\!\cdots\!51}a^{12}-\frac{12\!\cdots\!18}{13\!\cdots\!29}a^{11}+\frac{18\!\cdots\!81}{13\!\cdots\!29}a^{10}+\frac{50\!\cdots\!68}{13\!\cdots\!29}a^{9}-\frac{20\!\cdots\!01}{72\!\cdots\!91}a^{8}-\frac{49\!\cdots\!58}{72\!\cdots\!91}a^{7}+\frac{22\!\cdots\!34}{72\!\cdots\!91}a^{6}+\frac{21\!\cdots\!98}{38\!\cdots\!89}a^{5}-\frac{59\!\cdots\!84}{38\!\cdots\!89}a^{4}-\frac{64\!\cdots\!15}{38\!\cdots\!89}a^{3}+\frac{44\!\cdots\!73}{20\!\cdots\!31}a^{2}+\frac{28\!\cdots\!68}{20\!\cdots\!31}a-\frac{86\!\cdots\!01}{20\!\cdots\!31}$, $\frac{39\!\cdots\!68}{50\!\cdots\!47}a^{26}+\frac{12\!\cdots\!62}{50\!\cdots\!47}a^{25}-\frac{99\!\cdots\!63}{50\!\cdots\!47}a^{24}-\frac{38\!\cdots\!27}{50\!\cdots\!47}a^{23}+\frac{10\!\cdots\!39}{50\!\cdots\!47}a^{22}+\frac{13\!\cdots\!63}{13\!\cdots\!27}a^{21}-\frac{29\!\cdots\!73}{26\!\cdots\!13}a^{20}-\frac{15\!\cdots\!24}{26\!\cdots\!13}a^{19}+\frac{87\!\cdots\!86}{26\!\cdots\!13}a^{18}+\frac{58\!\cdots\!59}{26\!\cdots\!13}a^{17}-\frac{13\!\cdots\!50}{26\!\cdots\!13}a^{16}-\frac{12\!\cdots\!24}{26\!\cdots\!13}a^{15}+\frac{77\!\cdots\!79}{26\!\cdots\!13}a^{14}+\frac{16\!\cdots\!68}{26\!\cdots\!13}a^{13}+\frac{39\!\cdots\!44}{13\!\cdots\!27}a^{12}-\frac{62\!\cdots\!86}{13\!\cdots\!27}a^{11}-\frac{67\!\cdots\!15}{13\!\cdots\!27}a^{10}+\frac{23\!\cdots\!66}{13\!\cdots\!27}a^{9}+\frac{17\!\cdots\!24}{72\!\cdots\!33}a^{8}-\frac{20\!\cdots\!33}{72\!\cdots\!33}a^{7}-\frac{33\!\cdots\!90}{72\!\cdots\!33}a^{6}+\frac{71\!\cdots\!36}{38\!\cdots\!07}a^{5}+\frac{12\!\cdots\!26}{38\!\cdots\!07}a^{4}-\frac{11\!\cdots\!79}{38\!\cdots\!07}a^{3}-\frac{11\!\cdots\!80}{20\!\cdots\!53}a^{2}+\frac{11\!\cdots\!20}{20\!\cdots\!53}a+\frac{15\!\cdots\!66}{20\!\cdots\!53}$, $\frac{22\!\cdots\!26}{50\!\cdots\!47}a^{26}+\frac{71\!\cdots\!60}{50\!\cdots\!47}a^{25}-\frac{59\!\cdots\!84}{50\!\cdots\!47}a^{24}-\frac{18\!\cdots\!43}{50\!\cdots\!47}a^{23}+\frac{53\!\cdots\!64}{50\!\cdots\!47}a^{22}+\frac{19\!\cdots\!00}{50\!\cdots\!47}a^{21}-\frac{82\!\cdots\!16}{26\!\cdots\!13}a^{20}-\frac{60\!\cdots\!90}{26\!\cdots\!13}a^{19}-\frac{25\!\cdots\!62}{26\!\cdots\!13}a^{18}+\frac{20\!\cdots\!80}{26\!\cdots\!13}a^{17}+\frac{25\!\cdots\!53}{26\!\cdots\!13}a^{16}-\frac{44\!\cdots\!56}{26\!\cdots\!13}a^{15}-\frac{77\!\cdots\!40}{26\!\cdots\!13}a^{14}+\frac{55\!\cdots\!89}{26\!\cdots\!13}a^{13}+\frac{11\!\cdots\!26}{26\!\cdots\!13}a^{12}-\frac{21\!\cdots\!94}{13\!\cdots\!27}a^{11}-\frac{25\!\cdots\!26}{72\!\cdots\!33}a^{10}+\frac{85\!\cdots\!87}{13\!\cdots\!27}a^{9}+\frac{52\!\cdots\!68}{38\!\cdots\!07}a^{8}-\frac{94\!\cdots\!44}{72\!\cdots\!33}a^{7}-\frac{16\!\cdots\!41}{72\!\cdots\!33}a^{6}+\frac{54\!\cdots\!08}{38\!\cdots\!07}a^{5}+\frac{55\!\cdots\!89}{38\!\cdots\!07}a^{4}-\frac{26\!\cdots\!52}{38\!\cdots\!07}a^{3}-\frac{38\!\cdots\!64}{20\!\cdots\!53}a^{2}+\frac{16\!\cdots\!28}{20\!\cdots\!53}a+\frac{57\!\cdots\!70}{20\!\cdots\!53}$, $\frac{14\!\cdots\!00}{50\!\cdots\!47}a^{26}-\frac{94\!\cdots\!51}{50\!\cdots\!47}a^{25}+\frac{36\!\cdots\!97}{50\!\cdots\!47}a^{24}+\frac{50\!\cdots\!59}{50\!\cdots\!47}a^{23}-\frac{37\!\cdots\!21}{50\!\cdots\!47}a^{22}-\frac{78\!\cdots\!39}{50\!\cdots\!47}a^{21}+\frac{11\!\cdots\!02}{26\!\cdots\!13}a^{20}+\frac{29\!\cdots\!45}{26\!\cdots\!13}a^{19}-\frac{37\!\cdots\!56}{26\!\cdots\!13}a^{18}-\frac{11\!\cdots\!45}{26\!\cdots\!13}a^{17}+\frac{74\!\cdots\!25}{26\!\cdots\!13}a^{16}+\frac{27\!\cdots\!25}{26\!\cdots\!13}a^{15}-\frac{84\!\cdots\!15}{26\!\cdots\!13}a^{14}-\frac{37\!\cdots\!38}{26\!\cdots\!13}a^{13}+\frac{49\!\cdots\!31}{26\!\cdots\!13}a^{12}+\frac{14\!\cdots\!41}{13\!\cdots\!27}a^{11}-\frac{55\!\cdots\!21}{13\!\cdots\!27}a^{10}-\frac{58\!\cdots\!52}{13\!\cdots\!27}a^{9}-\frac{28\!\cdots\!72}{72\!\cdots\!33}a^{8}+\frac{58\!\cdots\!26}{72\!\cdots\!33}a^{7}+\frac{14\!\cdots\!24}{72\!\cdots\!33}a^{6}-\frac{27\!\cdots\!26}{38\!\cdots\!07}a^{5}-\frac{65\!\cdots\!20}{38\!\cdots\!07}a^{4}+\frac{97\!\cdots\!10}{38\!\cdots\!07}a^{3}+\frac{50\!\cdots\!17}{20\!\cdots\!53}a^{2}-\frac{63\!\cdots\!72}{20\!\cdots\!53}a+\frac{26\!\cdots\!32}{20\!\cdots\!53}$, $\frac{14\!\cdots\!36}{50\!\cdots\!47}a^{26}+\frac{22\!\cdots\!03}{50\!\cdots\!47}a^{25}+\frac{36\!\cdots\!00}{50\!\cdots\!47}a^{24}-\frac{28\!\cdots\!83}{50\!\cdots\!47}a^{23}-\frac{39\!\cdots\!60}{50\!\cdots\!47}a^{22}+\frac{45\!\cdots\!97}{50\!\cdots\!47}a^{21}+\frac{12\!\cdots\!14}{26\!\cdots\!13}a^{20}+\frac{50\!\cdots\!32}{26\!\cdots\!13}a^{19}-\frac{42\!\cdots\!29}{26\!\cdots\!13}a^{18}-\frac{35\!\cdots\!82}{26\!\cdots\!13}a^{17}+\frac{94\!\cdots\!39}{26\!\cdots\!13}a^{16}+\frac{10\!\cdots\!64}{26\!\cdots\!13}a^{15}-\frac{13\!\cdots\!21}{26\!\cdots\!13}a^{14}-\frac{16\!\cdots\!24}{26\!\cdots\!13}a^{13}+\frac{11\!\cdots\!37}{26\!\cdots\!13}a^{12}+\frac{68\!\cdots\!58}{13\!\cdots\!27}a^{11}-\frac{29\!\cdots\!84}{13\!\cdots\!27}a^{10}-\frac{28\!\cdots\!92}{13\!\cdots\!27}a^{9}+\frac{44\!\cdots\!76}{72\!\cdots\!33}a^{8}+\frac{27\!\cdots\!40}{72\!\cdots\!33}a^{7}-\frac{64\!\cdots\!09}{72\!\cdots\!33}a^{6}-\frac{11\!\cdots\!11}{38\!\cdots\!07}a^{5}+\frac{20\!\cdots\!67}{38\!\cdots\!07}a^{4}+\frac{24\!\cdots\!71}{38\!\cdots\!07}a^{3}-\frac{18\!\cdots\!52}{20\!\cdots\!53}a^{2}+\frac{13\!\cdots\!61}{20\!\cdots\!53}a+\frac{14\!\cdots\!32}{20\!\cdots\!53}$, $\frac{65\!\cdots\!27}{50\!\cdots\!47}a^{26}-\frac{13\!\cdots\!91}{50\!\cdots\!47}a^{25}-\frac{16\!\cdots\!05}{50\!\cdots\!47}a^{24}+\frac{20\!\cdots\!25}{50\!\cdots\!47}a^{23}+\frac{17\!\cdots\!99}{50\!\cdots\!47}a^{22}-\frac{10\!\cdots\!70}{50\!\cdots\!47}a^{21}-\frac{53\!\cdots\!04}{26\!\cdots\!13}a^{20}+\frac{23\!\cdots\!07}{13\!\cdots\!27}a^{19}+\frac{19\!\cdots\!24}{26\!\cdots\!13}a^{18}+\frac{32\!\cdots\!72}{13\!\cdots\!27}a^{17}-\frac{42\!\cdots\!78}{26\!\cdots\!13}a^{16}-\frac{25\!\cdots\!70}{26\!\cdots\!13}a^{15}+\frac{60\!\cdots\!90}{26\!\cdots\!13}a^{14}+\frac{41\!\cdots\!73}{26\!\cdots\!13}a^{13}-\frac{53\!\cdots\!98}{26\!\cdots\!13}a^{12}-\frac{91\!\cdots\!14}{72\!\cdots\!33}a^{11}+\frac{14\!\cdots\!37}{13\!\cdots\!27}a^{10}+\frac{58\!\cdots\!93}{13\!\cdots\!27}a^{9}-\frac{24\!\cdots\!27}{72\!\cdots\!33}a^{8}-\frac{22\!\cdots\!69}{72\!\cdots\!33}a^{7}+\frac{37\!\cdots\!31}{72\!\cdots\!33}a^{6}-\frac{23\!\cdots\!75}{38\!\cdots\!07}a^{5}-\frac{14\!\cdots\!08}{38\!\cdots\!07}a^{4}+\frac{31\!\cdots\!81}{38\!\cdots\!07}a^{3}+\frac{18\!\cdots\!62}{20\!\cdots\!53}a^{2}-\frac{37\!\cdots\!57}{20\!\cdots\!53}a-\frac{72\!\cdots\!17}{20\!\cdots\!53}$, $\frac{93\!\cdots\!95}{50\!\cdots\!47}a^{26}+\frac{27\!\cdots\!52}{26\!\cdots\!13}a^{25}-\frac{12\!\cdots\!86}{26\!\cdots\!13}a^{24}-\frac{30\!\cdots\!65}{50\!\cdots\!47}a^{23}+\frac{24\!\cdots\!53}{50\!\cdots\!47}a^{22}+\frac{48\!\cdots\!66}{50\!\cdots\!47}a^{21}-\frac{38\!\cdots\!40}{13\!\cdots\!27}a^{20}-\frac{18\!\cdots\!57}{26\!\cdots\!13}a^{19}+\frac{24\!\cdots\!97}{26\!\cdots\!13}a^{18}+\frac{74\!\cdots\!73}{26\!\cdots\!13}a^{17}-\frac{48\!\cdots\!32}{26\!\cdots\!13}a^{16}-\frac{17\!\cdots\!25}{26\!\cdots\!13}a^{15}+\frac{55\!\cdots\!81}{26\!\cdots\!13}a^{14}+\frac{23\!\cdots\!28}{26\!\cdots\!13}a^{13}-\frac{32\!\cdots\!07}{26\!\cdots\!13}a^{12}-\frac{48\!\cdots\!19}{72\!\cdots\!33}a^{11}+\frac{40\!\cdots\!94}{13\!\cdots\!27}a^{10}+\frac{35\!\cdots\!50}{13\!\cdots\!27}a^{9}+\frac{46\!\cdots\!34}{38\!\cdots\!07}a^{8}-\frac{33\!\cdots\!87}{72\!\cdots\!33}a^{7}-\frac{73\!\cdots\!72}{72\!\cdots\!33}a^{6}+\frac{13\!\cdots\!42}{38\!\cdots\!07}a^{5}+\frac{27\!\cdots\!05}{38\!\cdots\!07}a^{4}-\frac{39\!\cdots\!90}{38\!\cdots\!07}a^{3}+\frac{12\!\cdots\!14}{20\!\cdots\!53}a^{2}+\frac{31\!\cdots\!45}{20\!\cdots\!53}a-\frac{78\!\cdots\!52}{20\!\cdots\!53}$, $\frac{26\!\cdots\!57}{41\!\cdots\!83}a^{26}-\frac{10\!\cdots\!43}{41\!\cdots\!83}a^{25}+\frac{65\!\cdots\!81}{41\!\cdots\!83}a^{24}+\frac{75\!\cdots\!50}{41\!\cdots\!83}a^{23}-\frac{68\!\cdots\!12}{41\!\cdots\!83}a^{22}-\frac{12\!\cdots\!58}{41\!\cdots\!83}a^{21}+\frac{20\!\cdots\!74}{22\!\cdots\!57}a^{20}+\frac{48\!\cdots\!56}{22\!\cdots\!57}a^{19}-\frac{68\!\cdots\!75}{22\!\cdots\!57}a^{18}-\frac{19\!\cdots\!26}{22\!\cdots\!57}a^{17}+\frac{13\!\cdots\!33}{22\!\cdots\!57}a^{16}+\frac{46\!\cdots\!99}{22\!\cdots\!57}a^{15}-\frac{15\!\cdots\!74}{22\!\cdots\!57}a^{14}-\frac{61\!\cdots\!35}{22\!\cdots\!57}a^{13}+\frac{91\!\cdots\!74}{22\!\cdots\!57}a^{12}+\frac{23\!\cdots\!13}{11\!\cdots\!03}a^{11}-\frac{11\!\cdots\!71}{11\!\cdots\!03}a^{10}-\frac{88\!\cdots\!84}{11\!\cdots\!03}a^{9}-\frac{30\!\cdots\!89}{61\!\cdots\!37}a^{8}+\frac{40\!\cdots\!53}{32\!\cdots\!23}a^{7}+\frac{24\!\cdots\!43}{61\!\cdots\!37}a^{6}-\frac{25\!\cdots\!87}{32\!\cdots\!23}a^{5}-\frac{12\!\cdots\!40}{32\!\cdots\!23}a^{4}+\frac{39\!\cdots\!42}{32\!\cdots\!23}a^{3}+\frac{14\!\cdots\!55}{16\!\cdots\!17}a^{2}-\frac{18\!\cdots\!50}{16\!\cdots\!17}a-\frac{45\!\cdots\!13}{16\!\cdots\!17}$, $\frac{32\!\cdots\!50}{15\!\cdots\!71}a^{26}+\frac{27\!\cdots\!99}{15\!\cdots\!71}a^{25}+\frac{43\!\cdots\!64}{81\!\cdots\!09}a^{24}-\frac{60\!\cdots\!52}{15\!\cdots\!71}a^{23}-\frac{87\!\cdots\!95}{15\!\cdots\!71}a^{22}-\frac{51\!\cdots\!93}{15\!\cdots\!71}a^{21}+\frac{27\!\cdots\!06}{81\!\cdots\!09}a^{20}+\frac{30\!\cdots\!61}{81\!\cdots\!09}a^{19}-\frac{94\!\cdots\!64}{81\!\cdots\!09}a^{18}-\frac{14\!\cdots\!75}{81\!\cdots\!09}a^{17}+\frac{56\!\cdots\!85}{22\!\cdots\!69}a^{16}+\frac{38\!\cdots\!07}{81\!\cdots\!09}a^{15}-\frac{27\!\cdots\!66}{81\!\cdots\!09}a^{14}-\frac{56\!\cdots\!31}{81\!\cdots\!09}a^{13}+\frac{22\!\cdots\!43}{81\!\cdots\!09}a^{12}+\frac{24\!\cdots\!57}{43\!\cdots\!11}a^{11}-\frac{54\!\cdots\!86}{43\!\cdots\!11}a^{10}-\frac{10\!\cdots\!97}{43\!\cdots\!11}a^{9}+\frac{74\!\cdots\!96}{22\!\cdots\!69}a^{8}+\frac{12\!\cdots\!23}{22\!\cdots\!69}a^{7}-\frac{94\!\cdots\!06}{22\!\cdots\!69}a^{6}-\frac{75\!\cdots\!86}{11\!\cdots\!51}a^{5}+\frac{23\!\cdots\!60}{11\!\cdots\!51}a^{4}+\frac{35\!\cdots\!56}{11\!\cdots\!51}a^{3}+\frac{27\!\cdots\!51}{62\!\cdots\!29}a^{2}-\frac{22\!\cdots\!25}{62\!\cdots\!29}a-\frac{22\!\cdots\!83}{62\!\cdots\!29}$, $\frac{30\!\cdots\!97}{15\!\cdots\!71}a^{26}-\frac{36\!\cdots\!20}{15\!\cdots\!71}a^{25}-\frac{75\!\cdots\!93}{15\!\cdots\!71}a^{24}+\frac{34\!\cdots\!84}{15\!\cdots\!71}a^{23}+\frac{80\!\cdots\!99}{15\!\cdots\!71}a^{22}+\frac{15\!\cdots\!56}{15\!\cdots\!71}a^{21}-\frac{24\!\cdots\!95}{81\!\cdots\!09}a^{20}-\frac{17\!\cdots\!35}{81\!\cdots\!09}a^{19}+\frac{86\!\cdots\!56}{81\!\cdots\!09}a^{18}+\frac{97\!\cdots\!02}{81\!\cdots\!09}a^{17}-\frac{18\!\cdots\!04}{81\!\cdots\!09}a^{16}-\frac{26\!\cdots\!57}{81\!\cdots\!09}a^{15}+\frac{25\!\cdots\!51}{81\!\cdots\!09}a^{14}+\frac{39\!\cdots\!52}{81\!\cdots\!09}a^{13}-\frac{20\!\cdots\!82}{81\!\cdots\!09}a^{12}-\frac{16\!\cdots\!62}{43\!\cdots\!11}a^{11}+\frac{53\!\cdots\!85}{43\!\cdots\!11}a^{10}+\frac{65\!\cdots\!99}{43\!\cdots\!11}a^{9}-\frac{76\!\cdots\!68}{22\!\cdots\!69}a^{8}-\frac{62\!\cdots\!47}{22\!\cdots\!69}a^{7}+\frac{10\!\cdots\!24}{22\!\cdots\!69}a^{6}+\frac{24\!\cdots\!32}{11\!\cdots\!51}a^{5}-\frac{34\!\cdots\!98}{11\!\cdots\!51}a^{4}-\frac{52\!\cdots\!27}{11\!\cdots\!51}a^{3}+\frac{31\!\cdots\!09}{62\!\cdots\!29}a^{2}-\frac{17\!\cdots\!92}{62\!\cdots\!29}a-\frac{60\!\cdots\!52}{62\!\cdots\!29}$, $\frac{79\!\cdots\!42}{15\!\cdots\!71}a^{26}+\frac{12\!\cdots\!26}{15\!\cdots\!71}a^{25}-\frac{19\!\cdots\!33}{15\!\cdots\!71}a^{24}-\frac{46\!\cdots\!10}{15\!\cdots\!71}a^{23}+\frac{20\!\cdots\!32}{15\!\cdots\!71}a^{22}+\frac{62\!\cdots\!16}{15\!\cdots\!71}a^{21}-\frac{60\!\cdots\!88}{81\!\cdots\!09}a^{20}-\frac{22\!\cdots\!49}{81\!\cdots\!09}a^{19}+\frac{19\!\cdots\!28}{81\!\cdots\!09}a^{18}+\frac{85\!\cdots\!68}{81\!\cdots\!09}a^{17}-\frac{35\!\cdots\!86}{81\!\cdots\!09}a^{16}-\frac{19\!\cdots\!01}{81\!\cdots\!09}a^{15}+\frac{34\!\cdots\!29}{81\!\cdots\!09}a^{14}+\frac{25\!\cdots\!78}{81\!\cdots\!09}a^{13}-\frac{99\!\cdots\!84}{81\!\cdots\!09}a^{12}-\frac{98\!\cdots\!17}{43\!\cdots\!11}a^{11}-\frac{38\!\cdots\!28}{43\!\cdots\!11}a^{10}+\frac{37\!\cdots\!25}{43\!\cdots\!11}a^{9}+\frac{16\!\cdots\!61}{22\!\cdots\!69}a^{8}-\frac{34\!\cdots\!59}{22\!\cdots\!69}a^{7}-\frac{35\!\cdots\!53}{22\!\cdots\!69}a^{6}+\frac{12\!\cdots\!78}{11\!\cdots\!51}a^{5}+\frac{14\!\cdots\!92}{11\!\cdots\!51}a^{4}-\frac{23\!\cdots\!78}{11\!\cdots\!51}a^{3}-\frac{13\!\cdots\!67}{62\!\cdots\!29}a^{2}+\frac{11\!\cdots\!17}{62\!\cdots\!29}a+\frac{36\!\cdots\!46}{62\!\cdots\!29}$, $\frac{75\!\cdots\!03}{15\!\cdots\!71}a^{26}+\frac{87\!\cdots\!57}{15\!\cdots\!71}a^{25}+\frac{18\!\cdots\!60}{15\!\cdots\!71}a^{24}-\frac{77\!\cdots\!47}{15\!\cdots\!71}a^{23}-\frac{20\!\cdots\!20}{15\!\cdots\!71}a^{22}-\frac{49\!\cdots\!49}{15\!\cdots\!71}a^{21}+\frac{62\!\cdots\!11}{81\!\cdots\!09}a^{20}+\frac{48\!\cdots\!69}{81\!\cdots\!09}a^{19}-\frac{22\!\cdots\!93}{81\!\cdots\!09}a^{18}-\frac{26\!\cdots\!12}{81\!\cdots\!09}a^{17}+\frac{48\!\cdots\!68}{81\!\cdots\!09}a^{16}+\frac{72\!\cdots\!85}{81\!\cdots\!09}a^{15}-\frac{66\!\cdots\!14}{81\!\cdots\!09}a^{14}-\frac{11\!\cdots\!37}{81\!\cdots\!09}a^{13}+\frac{55\!\cdots\!36}{81\!\cdots\!09}a^{12}+\frac{25\!\cdots\!36}{22\!\cdots\!69}a^{11}-\frac{14\!\cdots\!52}{43\!\cdots\!11}a^{10}-\frac{22\!\cdots\!61}{43\!\cdots\!11}a^{9}+\frac{21\!\cdots\!60}{22\!\cdots\!69}a^{8}+\frac{26\!\cdots\!12}{22\!\cdots\!69}a^{7}-\frac{29\!\cdots\!90}{22\!\cdots\!69}a^{6}-\frac{16\!\cdots\!87}{11\!\cdots\!51}a^{5}+\frac{85\!\cdots\!53}{11\!\cdots\!51}a^{4}+\frac{80\!\cdots\!35}{11\!\cdots\!51}a^{3}-\frac{23\!\cdots\!20}{62\!\cdots\!29}a^{2}-\frac{47\!\cdots\!16}{62\!\cdots\!29}a-\frac{48\!\cdots\!31}{62\!\cdots\!29}$, $\frac{11\!\cdots\!03}{15\!\cdots\!71}a^{26}+\frac{14\!\cdots\!02}{15\!\cdots\!71}a^{25}+\frac{29\!\cdots\!77}{15\!\cdots\!71}a^{24}-\frac{14\!\cdots\!08}{15\!\cdots\!71}a^{23}-\frac{31\!\cdots\!75}{15\!\cdots\!71}a^{22}-\frac{52\!\cdots\!21}{15\!\cdots\!71}a^{21}+\frac{95\!\cdots\!92}{81\!\cdots\!09}a^{20}+\frac{66\!\cdots\!34}{81\!\cdots\!09}a^{19}-\frac{33\!\cdots\!27}{81\!\cdots\!09}a^{18}-\frac{37\!\cdots\!82}{81\!\cdots\!09}a^{17}+\frac{73\!\cdots\!14}{81\!\cdots\!09}a^{16}+\frac{53\!\cdots\!14}{43\!\cdots\!11}a^{15}-\frac{99\!\cdots\!69}{81\!\cdots\!09}a^{14}-\frac{14\!\cdots\!57}{81\!\cdots\!09}a^{13}+\frac{81\!\cdots\!66}{81\!\cdots\!09}a^{12}+\frac{62\!\cdots\!98}{43\!\cdots\!11}a^{11}-\frac{20\!\cdots\!83}{43\!\cdots\!11}a^{10}-\frac{25\!\cdots\!59}{43\!\cdots\!11}a^{9}+\frac{30\!\cdots\!26}{22\!\cdots\!69}a^{8}+\frac{23\!\cdots\!58}{22\!\cdots\!69}a^{7}-\frac{44\!\cdots\!03}{22\!\cdots\!69}a^{6}-\frac{91\!\cdots\!15}{11\!\cdots\!51}a^{5}+\frac{14\!\cdots\!74}{11\!\cdots\!51}a^{4}+\frac{17\!\cdots\!25}{11\!\cdots\!51}a^{3}-\frac{14\!\cdots\!12}{62\!\cdots\!29}a^{2}+\frac{87\!\cdots\!27}{62\!\cdots\!29}a+\frac{28\!\cdots\!93}{62\!\cdots\!29}$, $\frac{61\!\cdots\!10}{15\!\cdots\!71}a^{26}+\frac{45\!\cdots\!50}{15\!\cdots\!71}a^{25}+\frac{15\!\cdots\!74}{15\!\cdots\!71}a^{24}+\frac{21\!\cdots\!08}{15\!\cdots\!71}a^{23}-\frac{16\!\cdots\!15}{15\!\cdots\!71}a^{22}-\frac{56\!\cdots\!85}{81\!\cdots\!09}a^{21}+\frac{49\!\cdots\!80}{81\!\cdots\!09}a^{20}+\frac{59\!\cdots\!69}{81\!\cdots\!09}a^{19}-\frac{17\!\cdots\!02}{81\!\cdots\!09}a^{18}-\frac{14\!\cdots\!51}{43\!\cdots\!11}a^{17}+\frac{37\!\cdots\!60}{81\!\cdots\!09}a^{16}+\frac{71\!\cdots\!58}{81\!\cdots\!09}a^{15}-\frac{50\!\cdots\!21}{81\!\cdots\!09}a^{14}-\frac{10\!\cdots\!12}{81\!\cdots\!09}a^{13}+\frac{21\!\cdots\!25}{43\!\cdots\!11}a^{12}+\frac{44\!\cdots\!66}{43\!\cdots\!11}a^{11}-\frac{52\!\cdots\!92}{22\!\cdots\!69}a^{10}-\frac{99\!\cdots\!81}{22\!\cdots\!69}a^{9}+\frac{14\!\cdots\!73}{22\!\cdots\!69}a^{8}+\frac{20\!\cdots\!68}{22\!\cdots\!69}a^{7}-\frac{11\!\cdots\!03}{11\!\cdots\!51}a^{6}-\frac{10\!\cdots\!33}{11\!\cdots\!51}a^{5}+\frac{88\!\cdots\!37}{11\!\cdots\!51}a^{4}+\frac{20\!\cdots\!13}{62\!\cdots\!29}a^{3}-\frac{14\!\cdots\!54}{62\!\cdots\!29}a^{2}+\frac{65\!\cdots\!18}{62\!\cdots\!29}a+\frac{27\!\cdots\!00}{62\!\cdots\!29}$, $\frac{49\!\cdots\!73}{15\!\cdots\!71}a^{26}+\frac{40\!\cdots\!90}{15\!\cdots\!71}a^{25}-\frac{12\!\cdots\!09}{15\!\cdots\!71}a^{24}-\frac{19\!\cdots\!23}{15\!\cdots\!71}a^{23}+\frac{12\!\cdots\!68}{15\!\cdots\!71}a^{22}+\frac{29\!\cdots\!68}{15\!\cdots\!71}a^{21}-\frac{38\!\cdots\!57}{81\!\cdots\!09}a^{20}-\frac{10\!\cdots\!31}{81\!\cdots\!09}a^{19}+\frac{12\!\cdots\!42}{81\!\cdots\!09}a^{18}+\frac{42\!\cdots\!98}{81\!\cdots\!09}a^{17}-\frac{24\!\cdots\!86}{81\!\cdots\!09}a^{16}-\frac{98\!\cdots\!07}{81\!\cdots\!09}a^{15}+\frac{13\!\cdots\!11}{43\!\cdots\!11}a^{14}+\frac{12\!\cdots\!74}{81\!\cdots\!09}a^{13}-\frac{12\!\cdots\!24}{81\!\cdots\!09}a^{12}-\frac{49\!\cdots\!71}{43\!\cdots\!11}a^{11}+\frac{41\!\cdots\!03}{43\!\cdots\!11}a^{10}+\frac{17\!\cdots\!19}{43\!\cdots\!11}a^{9}+\frac{38\!\cdots\!41}{22\!\cdots\!69}a^{8}-\frac{14\!\cdots\!16}{22\!\cdots\!69}a^{7}-\frac{95\!\cdots\!43}{22\!\cdots\!69}a^{6}+\frac{43\!\cdots\!97}{11\!\cdots\!51}a^{5}+\frac{36\!\cdots\!45}{11\!\cdots\!51}a^{4}-\frac{30\!\cdots\!08}{11\!\cdots\!51}a^{3}-\frac{22\!\cdots\!53}{62\!\cdots\!29}a^{2}-\frac{56\!\cdots\!51}{62\!\cdots\!29}a+\frac{24\!\cdots\!34}{62\!\cdots\!29}$, $\frac{38\!\cdots\!73}{15\!\cdots\!71}a^{26}+\frac{18\!\cdots\!22}{15\!\cdots\!71}a^{25}-\frac{96\!\cdots\!84}{15\!\cdots\!71}a^{24}-\frac{12\!\cdots\!72}{15\!\cdots\!71}a^{23}+\frac{10\!\cdots\!00}{15\!\cdots\!71}a^{22}+\frac{19\!\cdots\!03}{15\!\cdots\!71}a^{21}-\frac{29\!\cdots\!49}{81\!\cdots\!09}a^{20}-\frac{74\!\cdots\!88}{81\!\cdots\!09}a^{19}+\frac{99\!\cdots\!86}{81\!\cdots\!09}a^{18}+\frac{29\!\cdots\!00}{81\!\cdots\!09}a^{17}-\frac{19\!\cdots\!26}{81\!\cdots\!09}a^{16}-\frac{69\!\cdots\!96}{81\!\cdots\!09}a^{15}+\frac{22\!\cdots\!50}{81\!\cdots\!09}a^{14}+\frac{92\!\cdots\!22}{81\!\cdots\!09}a^{13}-\frac{12\!\cdots\!14}{81\!\cdots\!09}a^{12}-\frac{35\!\cdots\!06}{43\!\cdots\!11}a^{11}+\frac{14\!\cdots\!78}{43\!\cdots\!11}a^{10}+\frac{13\!\cdots\!09}{43\!\cdots\!11}a^{9}+\frac{78\!\cdots\!55}{22\!\cdots\!69}a^{8}-\frac{11\!\cdots\!63}{22\!\cdots\!69}a^{7}-\frac{40\!\cdots\!68}{22\!\cdots\!69}a^{6}+\frac{41\!\cdots\!23}{11\!\cdots\!51}a^{5}+\frac{17\!\cdots\!29}{11\!\cdots\!51}a^{4}-\frac{65\!\cdots\!04}{11\!\cdots\!51}a^{3}-\frac{12\!\cdots\!93}{62\!\cdots\!29}a^{2}+\frac{19\!\cdots\!54}{62\!\cdots\!29}a+\frac{32\!\cdots\!38}{62\!\cdots\!29}$, $\frac{49\!\cdots\!70}{15\!\cdots\!71}a^{26}+\frac{29\!\cdots\!35}{15\!\cdots\!71}a^{25}+\frac{12\!\cdots\!04}{15\!\cdots\!71}a^{24}+\frac{18\!\cdots\!48}{15\!\cdots\!71}a^{23}-\frac{13\!\cdots\!16}{15\!\cdots\!71}a^{22}-\frac{10\!\cdots\!10}{15\!\cdots\!71}a^{21}+\frac{39\!\cdots\!59}{81\!\cdots\!09}a^{20}+\frac{53\!\cdots\!73}{81\!\cdots\!09}a^{19}-\frac{73\!\cdots\!55}{43\!\cdots\!11}a^{18}-\frac{24\!\cdots\!74}{81\!\cdots\!09}a^{17}+\frac{29\!\cdots\!37}{81\!\cdots\!09}a^{16}+\frac{61\!\cdots\!20}{81\!\cdots\!09}a^{15}-\frac{38\!\cdots\!49}{81\!\cdots\!09}a^{14}-\frac{89\!\cdots\!97}{81\!\cdots\!09}a^{13}+\frac{30\!\cdots\!59}{81\!\cdots\!09}a^{12}+\frac{37\!\cdots\!09}{43\!\cdots\!11}a^{11}-\frac{72\!\cdots\!03}{43\!\cdots\!11}a^{10}-\frac{16\!\cdots\!61}{43\!\cdots\!11}a^{9}+\frac{95\!\cdots\!63}{22\!\cdots\!69}a^{8}+\frac{18\!\cdots\!70}{22\!\cdots\!69}a^{7}-\frac{12\!\cdots\!65}{22\!\cdots\!69}a^{6}-\frac{10\!\cdots\!45}{11\!\cdots\!51}a^{5}+\frac{43\!\cdots\!79}{11\!\cdots\!51}a^{4}+\frac{46\!\cdots\!42}{11\!\cdots\!51}a^{3}-\frac{60\!\cdots\!90}{62\!\cdots\!29}a^{2}-\frac{33\!\cdots\!59}{62\!\cdots\!29}a+\frac{75\!\cdots\!97}{62\!\cdots\!29}$, $\frac{58\!\cdots\!31}{15\!\cdots\!71}a^{26}+\frac{23\!\cdots\!10}{15\!\cdots\!71}a^{25}-\frac{77\!\cdots\!09}{81\!\cdots\!09}a^{24}-\frac{17\!\cdots\!88}{15\!\cdots\!71}a^{23}+\frac{15\!\cdots\!47}{15\!\cdots\!71}a^{22}+\frac{28\!\cdots\!61}{15\!\cdots\!71}a^{21}-\frac{47\!\cdots\!49}{81\!\cdots\!09}a^{20}-\frac{11\!\cdots\!26}{81\!\cdots\!09}a^{19}+\frac{16\!\cdots\!00}{81\!\cdots\!09}a^{18}+\frac{46\!\cdots\!99}{81\!\cdots\!09}a^{17}-\frac{33\!\cdots\!84}{81\!\cdots\!09}a^{16}-\frac{11\!\cdots\!11}{81\!\cdots\!09}a^{15}+\frac{41\!\cdots\!81}{81\!\cdots\!09}a^{14}+\frac{15\!\cdots\!19}{81\!\cdots\!09}a^{13}-\frac{28\!\cdots\!17}{81\!\cdots\!09}a^{12}-\frac{67\!\cdots\!58}{43\!\cdots\!11}a^{11}+\frac{50\!\cdots\!29}{43\!\cdots\!11}a^{10}+\frac{30\!\cdots\!10}{43\!\cdots\!11}a^{9}-\frac{32\!\cdots\!00}{22\!\cdots\!69}a^{8}-\frac{38\!\cdots\!04}{22\!\cdots\!69}a^{7}-\frac{25\!\cdots\!13}{22\!\cdots\!69}a^{6}+\frac{24\!\cdots\!15}{11\!\cdots\!51}a^{5}+\frac{46\!\cdots\!79}{11\!\cdots\!51}a^{4}-\frac{12\!\cdots\!04}{11\!\cdots\!51}a^{3}-\frac{15\!\cdots\!80}{62\!\cdots\!29}a^{2}+\frac{84\!\cdots\!01}{62\!\cdots\!29}a+\frac{10\!\cdots\!46}{62\!\cdots\!29}$, $\frac{36\!\cdots\!67}{15\!\cdots\!71}a^{26}+\frac{33\!\cdots\!08}{15\!\cdots\!71}a^{25}-\frac{90\!\cdots\!36}{15\!\cdots\!71}a^{24}-\frac{15\!\cdots\!36}{15\!\cdots\!71}a^{23}+\frac{94\!\cdots\!96}{15\!\cdots\!71}a^{22}+\frac{22\!\cdots\!55}{15\!\cdots\!71}a^{21}-\frac{27\!\cdots\!61}{81\!\cdots\!09}a^{20}-\frac{82\!\cdots\!01}{81\!\cdots\!09}a^{19}+\frac{91\!\cdots\!41}{81\!\cdots\!09}a^{18}+\frac{32\!\cdots\!45}{81\!\cdots\!09}a^{17}-\frac{17\!\cdots\!89}{81\!\cdots\!09}a^{16}-\frac{38\!\cdots\!14}{43\!\cdots\!11}a^{15}+\frac{18\!\cdots\!62}{81\!\cdots\!09}a^{14}+\frac{97\!\cdots\!93}{81\!\cdots\!09}a^{13}-\frac{89\!\cdots\!88}{81\!\cdots\!09}a^{12}-\frac{37\!\cdots\!09}{43\!\cdots\!11}a^{11}+\frac{11\!\cdots\!17}{43\!\cdots\!11}a^{10}+\frac{13\!\cdots\!95}{43\!\cdots\!11}a^{9}+\frac{32\!\cdots\!24}{22\!\cdots\!69}a^{8}-\frac{12\!\cdots\!99}{22\!\cdots\!69}a^{7}-\frac{82\!\cdots\!60}{22\!\cdots\!69}a^{6}+\frac{44\!\cdots\!53}{11\!\cdots\!51}a^{5}+\frac{35\!\cdots\!86}{11\!\cdots\!51}a^{4}-\frac{93\!\cdots\!57}{11\!\cdots\!51}a^{3}-\frac{43\!\cdots\!73}{62\!\cdots\!29}a^{2}+\frac{39\!\cdots\!30}{62\!\cdots\!29}a+\frac{32\!\cdots\!46}{62\!\cdots\!29}$, $\frac{45\!\cdots\!54}{15\!\cdots\!71}a^{26}-\frac{52\!\cdots\!28}{15\!\cdots\!71}a^{25}+\frac{11\!\cdots\!86}{15\!\cdots\!71}a^{24}+\frac{21\!\cdots\!84}{15\!\cdots\!71}a^{23}-\frac{11\!\cdots\!94}{15\!\cdots\!71}a^{22}-\frac{16\!\cdots\!76}{81\!\cdots\!09}a^{21}+\frac{35\!\cdots\!46}{81\!\cdots\!09}a^{20}+\frac{11\!\cdots\!89}{81\!\cdots\!09}a^{19}-\frac{11\!\cdots\!35}{81\!\cdots\!09}a^{18}-\frac{43\!\cdots\!33}{81\!\cdots\!09}a^{17}+\frac{21\!\cdots\!59}{81\!\cdots\!09}a^{16}+\frac{99\!\cdots\!88}{81\!\cdots\!09}a^{15}-\frac{11\!\cdots\!56}{43\!\cdots\!11}a^{14}-\frac{13\!\cdots\!60}{81\!\cdots\!09}a^{13}+\frac{27\!\cdots\!70}{22\!\cdots\!69}a^{12}+\frac{51\!\cdots\!39}{43\!\cdots\!11}a^{11}+\frac{50\!\cdots\!80}{43\!\cdots\!11}a^{10}-\frac{19\!\cdots\!90}{43\!\cdots\!11}a^{9}-\frac{57\!\cdots\!17}{22\!\cdots\!69}a^{8}+\frac{18\!\cdots\!73}{22\!\cdots\!69}a^{7}+\frac{14\!\cdots\!72}{22\!\cdots\!69}a^{6}-\frac{73\!\cdots\!26}{11\!\cdots\!51}a^{5}-\frac{61\!\cdots\!59}{11\!\cdots\!51}a^{4}+\frac{16\!\cdots\!15}{11\!\cdots\!51}a^{3}+\frac{59\!\cdots\!28}{62\!\cdots\!29}a^{2}-\frac{74\!\cdots\!48}{62\!\cdots\!29}a-\frac{13\!\cdots\!41}{62\!\cdots\!29}$, $\frac{12\!\cdots\!61}{15\!\cdots\!71}a^{26}-\frac{68\!\cdots\!63}{15\!\cdots\!71}a^{25}+\frac{31\!\cdots\!48}{15\!\cdots\!71}a^{24}+\frac{41\!\cdots\!48}{15\!\cdots\!71}a^{23}-\frac{33\!\cdots\!57}{15\!\cdots\!71}a^{22}-\frac{65\!\cdots\!30}{15\!\cdots\!71}a^{21}+\frac{98\!\cdots\!34}{81\!\cdots\!09}a^{20}+\frac{25\!\cdots\!95}{81\!\cdots\!09}a^{19}-\frac{32\!\cdots\!33}{81\!\cdots\!09}a^{18}-\frac{10\!\cdots\!25}{81\!\cdots\!09}a^{17}+\frac{65\!\cdots\!05}{81\!\cdots\!09}a^{16}+\frac{23\!\cdots\!31}{81\!\cdots\!09}a^{15}-\frac{73\!\cdots\!29}{81\!\cdots\!09}a^{14}-\frac{31\!\cdots\!51}{81\!\cdots\!09}a^{13}+\frac{42\!\cdots\!10}{81\!\cdots\!09}a^{12}+\frac{64\!\cdots\!66}{22\!\cdots\!69}a^{11}-\frac{44\!\cdots\!25}{43\!\cdots\!11}a^{10}-\frac{47\!\cdots\!60}{43\!\cdots\!11}a^{9}-\frac{38\!\cdots\!16}{22\!\cdots\!69}a^{8}+\frac{43\!\cdots\!33}{22\!\cdots\!69}a^{7}+\frac{17\!\cdots\!81}{22\!\cdots\!69}a^{6}-\frac{84\!\cdots\!78}{62\!\cdots\!29}a^{5}-\frac{80\!\cdots\!52}{11\!\cdots\!51}a^{4}+\frac{28\!\cdots\!98}{11\!\cdots\!51}a^{3}+\frac{55\!\cdots\!99}{62\!\cdots\!29}a^{2}-\frac{88\!\cdots\!74}{62\!\cdots\!29}a+\frac{94\!\cdots\!69}{62\!\cdots\!29}$, $\frac{45\!\cdots\!27}{15\!\cdots\!71}a^{26}-\frac{26\!\cdots\!76}{15\!\cdots\!71}a^{25}-\frac{11\!\cdots\!13}{15\!\cdots\!71}a^{24}-\frac{19\!\cdots\!04}{15\!\cdots\!71}a^{23}+\frac{12\!\cdots\!53}{15\!\cdots\!71}a^{22}+\frac{99\!\cdots\!29}{15\!\cdots\!71}a^{21}-\frac{37\!\cdots\!32}{81\!\cdots\!09}a^{20}-\frac{50\!\cdots\!52}{81\!\cdots\!09}a^{19}+\frac{12\!\cdots\!27}{81\!\cdots\!09}a^{18}+\frac{22\!\cdots\!27}{81\!\cdots\!09}a^{17}-\frac{27\!\cdots\!33}{81\!\cdots\!09}a^{16}-\frac{57\!\cdots\!35}{81\!\cdots\!09}a^{15}+\frac{35\!\cdots\!08}{81\!\cdots\!09}a^{14}+\frac{82\!\cdots\!21}{81\!\cdots\!09}a^{13}-\frac{27\!\cdots\!81}{81\!\cdots\!09}a^{12}-\frac{34\!\cdots\!15}{43\!\cdots\!11}a^{11}+\frac{62\!\cdots\!68}{43\!\cdots\!11}a^{10}+\frac{14\!\cdots\!69}{43\!\cdots\!11}a^{9}-\frac{78\!\cdots\!38}{22\!\cdots\!69}a^{8}-\frac{15\!\cdots\!43}{22\!\cdots\!69}a^{7}+\frac{93\!\cdots\!65}{22\!\cdots\!69}a^{6}+\frac{75\!\cdots\!42}{11\!\cdots\!51}a^{5}-\frac{23\!\cdots\!15}{11\!\cdots\!51}a^{4}-\frac{30\!\cdots\!85}{11\!\cdots\!51}a^{3}+\frac{47\!\cdots\!67}{62\!\cdots\!29}a^{2}+\frac{17\!\cdots\!65}{62\!\cdots\!29}a+\frac{24\!\cdots\!43}{62\!\cdots\!29}$, $\frac{27\!\cdots\!40}{15\!\cdots\!71}a^{26}-\frac{33\!\cdots\!92}{15\!\cdots\!71}a^{25}+\frac{69\!\cdots\!13}{15\!\cdots\!71}a^{24}+\frac{13\!\cdots\!11}{15\!\cdots\!71}a^{23}-\frac{71\!\cdots\!84}{15\!\cdots\!71}a^{22}-\frac{18\!\cdots\!56}{15\!\cdots\!71}a^{21}+\frac{21\!\cdots\!91}{81\!\cdots\!09}a^{20}+\frac{68\!\cdots\!71}{81\!\cdots\!09}a^{19}-\frac{68\!\cdots\!41}{81\!\cdots\!09}a^{18}-\frac{26\!\cdots\!19}{81\!\cdots\!09}a^{17}+\frac{12\!\cdots\!52}{81\!\cdots\!09}a^{16}+\frac{60\!\cdots\!29}{81\!\cdots\!09}a^{15}-\frac{13\!\cdots\!66}{81\!\cdots\!09}a^{14}-\frac{79\!\cdots\!38}{81\!\cdots\!09}a^{13}+\frac{52\!\cdots\!40}{81\!\cdots\!09}a^{12}+\frac{30\!\cdots\!70}{43\!\cdots\!11}a^{11}+\frac{52\!\cdots\!91}{43\!\cdots\!11}a^{10}-\frac{11\!\cdots\!82}{43\!\cdots\!11}a^{9}-\frac{36\!\cdots\!20}{22\!\cdots\!69}a^{8}+\frac{97\!\cdots\!30}{22\!\cdots\!69}a^{7}+\frac{80\!\cdots\!59}{22\!\cdots\!69}a^{6}-\frac{35\!\cdots\!87}{11\!\cdots\!51}a^{5}-\frac{31\!\cdots\!21}{11\!\cdots\!51}a^{4}+\frac{71\!\cdots\!07}{11\!\cdots\!51}a^{3}+\frac{27\!\cdots\!71}{62\!\cdots\!29}a^{2}-\frac{31\!\cdots\!04}{62\!\cdots\!29}a-\frac{63\!\cdots\!82}{62\!\cdots\!29}$, $\frac{45\!\cdots\!66}{15\!\cdots\!71}a^{26}+\frac{93\!\cdots\!45}{15\!\cdots\!71}a^{25}+\frac{11\!\cdots\!54}{15\!\cdots\!71}a^{24}-\frac{14\!\cdots\!80}{15\!\cdots\!71}a^{23}-\frac{12\!\cdots\!15}{15\!\cdots\!71}a^{22}+\frac{74\!\cdots\!32}{15\!\cdots\!71}a^{21}+\frac{38\!\cdots\!93}{81\!\cdots\!09}a^{20}-\frac{25\!\cdots\!84}{81\!\cdots\!09}a^{19}-\frac{13\!\cdots\!06}{81\!\cdots\!09}a^{18}-\frac{48\!\cdots\!99}{81\!\cdots\!09}a^{17}+\frac{31\!\cdots\!41}{81\!\cdots\!09}a^{16}+\frac{20\!\cdots\!31}{81\!\cdots\!09}a^{15}-\frac{44\!\cdots\!31}{81\!\cdots\!09}a^{14}-\frac{35\!\cdots\!93}{81\!\cdots\!09}a^{13}+\frac{39\!\cdots\!93}{81\!\cdots\!09}a^{12}+\frac{16\!\cdots\!82}{43\!\cdots\!11}a^{11}-\frac{11\!\cdots\!62}{43\!\cdots\!11}a^{10}-\frac{72\!\cdots\!61}{43\!\cdots\!11}a^{9}+\frac{18\!\cdots\!33}{22\!\cdots\!69}a^{8}+\frac{78\!\cdots\!84}{22\!\cdots\!69}a^{7}-\frac{28\!\cdots\!94}{22\!\cdots\!69}a^{6}-\frac{37\!\cdots\!89}{11\!\cdots\!51}a^{5}+\frac{95\!\cdots\!48}{11\!\cdots\!51}a^{4}+\frac{12\!\cdots\!43}{11\!\cdots\!51}a^{3}-\frac{80\!\cdots\!78}{62\!\cdots\!29}a^{2}+\frac{30\!\cdots\!58}{62\!\cdots\!29}a+\frac{14\!\cdots\!45}{62\!\cdots\!29}$, $\frac{14\!\cdots\!38}{15\!\cdots\!71}a^{26}+\frac{21\!\cdots\!40}{15\!\cdots\!71}a^{25}-\frac{35\!\cdots\!23}{15\!\cdots\!71}a^{24}-\frac{80\!\cdots\!44}{15\!\cdots\!71}a^{23}+\frac{37\!\cdots\!31}{15\!\cdots\!71}a^{22}+\frac{10\!\cdots\!86}{15\!\cdots\!71}a^{21}-\frac{10\!\cdots\!47}{81\!\cdots\!09}a^{20}-\frac{39\!\cdots\!10}{81\!\cdots\!09}a^{19}+\frac{35\!\cdots\!26}{81\!\cdots\!09}a^{18}+\frac{15\!\cdots\!31}{81\!\cdots\!09}a^{17}-\frac{64\!\cdots\!02}{81\!\cdots\!09}a^{16}-\frac{33\!\cdots\!66}{81\!\cdots\!09}a^{15}+\frac{61\!\cdots\!00}{81\!\cdots\!09}a^{14}+\frac{44\!\cdots\!68}{81\!\cdots\!09}a^{13}-\frac{18\!\cdots\!63}{81\!\cdots\!09}a^{12}-\frac{16\!\cdots\!24}{43\!\cdots\!11}a^{11}-\frac{61\!\cdots\!53}{43\!\cdots\!11}a^{10}+\frac{62\!\cdots\!21}{43\!\cdots\!11}a^{9}+\frac{26\!\cdots\!02}{22\!\cdots\!69}a^{8}-\frac{55\!\cdots\!55}{22\!\cdots\!69}a^{7}-\frac{55\!\cdots\!91}{22\!\cdots\!69}a^{6}+\frac{20\!\cdots\!86}{11\!\cdots\!51}a^{5}+\frac{21\!\cdots\!88}{11\!\cdots\!51}a^{4}-\frac{40\!\cdots\!69}{11\!\cdots\!51}a^{3}-\frac{19\!\cdots\!79}{62\!\cdots\!29}a^{2}+\frac{23\!\cdots\!12}{62\!\cdots\!29}a+\frac{46\!\cdots\!56}{62\!\cdots\!29}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 5070048917270998000000 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{27}\cdot(2\pi)^{0}\cdot 5070048917270998000000 \cdot 1}{2\cdot\sqrt{1710104639727978317616739861182036266774010607729523946446049}}\cr\approx \mathstrut & 0.260184064725410 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^27 - 252*x^25 - 189*x^24 + 26676*x^23 + 37278*x^22 - 1542249*x^21 - 2997459*x^20 + 53109180*x^19 + 127595412*x^18 - 1115642646*x^17 - 3116503386*x^16 + 14106344724*x^15 + 44288457588*x^14 - 103097199771*x^13 - 357917273712*x^12 + 414062657892*x^11 + 1585147569417*x^10 - 865139058768*x^9 - 3663417923046*x^8 + 907297669062*x^7 + 4289785218828*x^6 - 435357630576*x^5 - 2278964378115*x^4 + 94666216968*x^3 + 374720442165*x^2 - 29638905030*x - 7668478603)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^27 - 252*x^25 - 189*x^24 + 26676*x^23 + 37278*x^22 - 1542249*x^21 - 2997459*x^20 + 53109180*x^19 + 127595412*x^18 - 1115642646*x^17 - 3116503386*x^16 + 14106344724*x^15 + 44288457588*x^14 - 103097199771*x^13 - 357917273712*x^12 + 414062657892*x^11 + 1585147569417*x^10 - 865139058768*x^9 - 3663417923046*x^8 + 907297669062*x^7 + 4289785218828*x^6 - 435357630576*x^5 - 2278964378115*x^4 + 94666216968*x^3 + 374720442165*x^2 - 29638905030*x - 7668478603, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^27 - 252*x^25 - 189*x^24 + 26676*x^23 + 37278*x^22 - 1542249*x^21 - 2997459*x^20 + 53109180*x^19 + 127595412*x^18 - 1115642646*x^17 - 3116503386*x^16 + 14106344724*x^15 + 44288457588*x^14 - 103097199771*x^13 - 357917273712*x^12 + 414062657892*x^11 + 1585147569417*x^10 - 865139058768*x^9 - 3663417923046*x^8 + 907297669062*x^7 + 4289785218828*x^6 - 435357630576*x^5 - 2278964378115*x^4 + 94666216968*x^3 + 374720442165*x^2 - 29638905030*x - 7668478603);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 252*x^25 - 189*x^24 + 26676*x^23 + 37278*x^22 - 1542249*x^21 - 2997459*x^20 + 53109180*x^19 + 127595412*x^18 - 1115642646*x^17 - 3116503386*x^16 + 14106344724*x^15 + 44288457588*x^14 - 103097199771*x^13 - 357917273712*x^12 + 414062657892*x^11 + 1585147569417*x^10 - 865139058768*x^9 - 3663417923046*x^8 + 907297669062*x^7 + 4289785218828*x^6 - 435357630576*x^5 - 2278964378115*x^4 + 94666216968*x^3 + 374720442165*x^2 - 29638905030*x - 7668478603);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3^4.C_3\wr C_3$ (as 27T692):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 6561
The 81 conjugacy class representatives for $C_3^4.C_3\wr C_3$
Character table for $C_3^4.C_3\wr C_3$

Intermediate fields

\(\Q(\zeta_{9})^+\), 9.9.139858796529.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 27 siblings: data not computed
Minimal sibling: 27.27.36349720812497449407244384714190733653686081630175529.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $27$ R $27$ ${\href{/padicField/7.9.0.1}{9} }^{2}{,}\,{\href{/padicField/7.3.0.1}{3} }^{3}$ ${\href{/padicField/11.9.0.1}{9} }^{2}{,}\,{\href{/padicField/11.3.0.1}{3} }^{3}$ $27$ ${\href{/padicField/17.9.0.1}{9} }^{3}$ R $27$ $27$ ${\href{/padicField/31.9.0.1}{9} }^{2}{,}\,{\href{/padicField/31.3.0.1}{3} }^{3}$ ${\href{/padicField/37.9.0.1}{9} }^{2}{,}\,{\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{3}$ $27$ $27$ $27$ ${\href{/padicField/53.9.0.1}{9} }^{3}$ $27$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display Deg $27$$27$$1$$78$
\(19\) Copy content Toggle raw display 19.3.0.1$x^{3} + 4 x + 17$$1$$3$$0$$C_3$$[\ ]^{3}$
19.3.2.3$x^{3} + 38$$3$$1$$2$$C_3$$[\ ]_{3}$
19.3.2.2$x^{3} + 19$$3$$1$$2$$C_3$$[\ ]_{3}$
19.9.8.2$x^{9} + 57$$9$$1$$8$$C_9$$[\ ]_{9}$
19.9.6.1$x^{9} + 1444 x^{3} - 116603$$3$$3$$6$$C_9$$[\ ]_{3}^{3}$