Normalized defining polynomial
\( x^{27} - 171 x^{25} + 12312 x^{23} - 493905 x^{21} + 12316959 x^{19} - 56221 x^{18} - 201382767 x^{17} + 3645378 x^{16} + 2213413740 x^{15} - 98688375 x^{14} - 16451805348 x^{13} + 1450706658 x^{12} + 81769006062 x^{11} - 12502317699 x^{10} - 263183382240 x^{9} + 63310449366 x^{8} + 513818842734 x^{7} - 177767378010 x^{6} - 531464834277 x^{5} + 237369275820 x^{4} + 211536642519 x^{3} - 96914645181 x^{2} - 25035315705 x + 9868941829 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(151387227139400874793584512894425905310908185375198495733583209=3^{66}\cdot 19^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $200.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(513=3^{3}\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{513}(256,·)$, $\chi_{513}(1,·)$, $\chi_{513}(43,·)$, $\chi_{513}(4,·)$, $\chi_{513}(214,·)$, $\chi_{513}(385,·)$, $\chi_{513}(64,·)$, $\chi_{513}(139,·)$, $\chi_{513}(334,·)$, $\chi_{513}(16,·)$, $\chi_{513}(340,·)$, $\chi_{513}(85,·)$, $\chi_{513}(406,·)$, $\chi_{513}(343,·)$, $\chi_{513}(346,·)$, $\chi_{513}(481,·)$, $\chi_{513}(163,·)$, $\chi_{513}(358,·)$, $\chi_{513}(169,·)$, $\chi_{513}(427,·)$, $\chi_{513}(172,·)$, $\chi_{513}(175,·)$, $\chi_{513}(235,·)$, $\chi_{513}(310,·)$, $\chi_{513}(505,·)$, $\chi_{513}(187,·)$, $\chi_{513}(511,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{38} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{38} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{38} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{38} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{38} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{38} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{38} a^{15} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{38} a^{16} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{722} a^{17} - \frac{11}{38} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{1444} a^{18} - \frac{1}{76} a^{14} - \frac{1}{76} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{1444} a^{19} - \frac{1}{76} a^{15} - \frac{1}{76} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{1444} a^{20} - \frac{1}{76} a^{16} - \frac{1}{76} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{1444} a^{21} - \frac{1}{1444} a^{17} - \frac{1}{76} a^{13} - \frac{2}{19} a^{8} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{1444} a^{22} - \frac{1}{76} a^{10} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{97523428} a^{23} - \frac{56}{1283203} a^{22} - \frac{3307}{24380857} a^{21} + \frac{20073}{97523428} a^{20} + \frac{2535}{24380857} a^{19} - \frac{2057}{97523428} a^{18} - \frac{32753}{48761714} a^{17} - \frac{42523}{5132812} a^{16} + \frac{4486}{1283203} a^{15} + \frac{64593}{5132812} a^{14} + \frac{3970}{1283203} a^{13} + \frac{45135}{5132812} a^{12} + \frac{11237}{5132812} a^{11} + \frac{17929}{5132812} a^{10} + \frac{5961}{2566406} a^{9} + \frac{431597}{1283203} a^{8} + \frac{72099}{270148} a^{7} + \frac{25191}{67537} a^{6} - \frac{91083}{270148} a^{5} - \frac{132013}{270148} a^{4} + \frac{30681}{270148} a^{3} + \frac{538}{67537} a^{2} - \frac{81321}{270148} a + \frac{58635}{270148}$, $\frac{1}{97523428} a^{24} - \frac{6712}{24380857} a^{22} - \frac{9987}{48761714} a^{21} + \frac{6523}{97523428} a^{20} - \frac{590}{24380857} a^{19} + \frac{27249}{97523428} a^{18} - \frac{32915}{48761714} a^{17} - \frac{28321}{5132812} a^{16} + \frac{24955}{2566406} a^{15} - \frac{19439}{5132812} a^{14} + \frac{681}{135074} a^{13} - \frac{9242}{1283203} a^{12} - \frac{10283}{1283203} a^{11} - \frac{66601}{5132812} a^{10} + \frac{14427}{1283203} a^{9} - \frac{364057}{5132812} a^{8} + \frac{16495}{67537} a^{7} - \frac{99449}{270148} a^{6} + \frac{41865}{135074} a^{5} + \frac{5914}{67537} a^{4} - \frac{18035}{135074} a^{3} - \frac{107441}{270148} a^{2} + \frac{20896}{67537} a + \frac{1345}{270148}$, $\frac{1}{120002285583716} a^{25} - \frac{29267}{6315909767564} a^{24} + \frac{10177}{6315909767564} a^{23} + \frac{45502551}{1578977441891} a^{22} + \frac{178228312}{1578977441891} a^{21} - \frac{438768215}{1578977441891} a^{20} - \frac{130380912}{1578977441891} a^{19} + \frac{403071893}{1578977441891} a^{18} + \frac{1852544429}{3157954883782} a^{17} - \frac{37388136399}{3157954883782} a^{16} + \frac{204937153}{83104075889} a^{15} + \frac{1038791250}{83104075889} a^{14} - \frac{209146059}{332416303556} a^{13} + \frac{842173583}{332416303556} a^{12} + \frac{3756343975}{332416303556} a^{11} - \frac{1045237341}{166208151778} a^{10} + \frac{2726804825}{332416303556} a^{9} - \frac{128477884159}{332416303556} a^{8} + \frac{10434518816}{83104075889} a^{7} - \frac{2568787789}{17495594924} a^{6} - \frac{793145160}{4373898731} a^{5} - \frac{3388046961}{17495594924} a^{4} - \frac{1358913833}{8747797462} a^{3} - \frac{4612120109}{17495594924} a^{2} + \frac{7155908693}{17495594924} a - \frac{1196685474}{4373898731}$, $\frac{1}{665662426933356484876281403693860699841963600691123419071058047984704644372} a^{26} - \frac{820365658764347535946488998350603758795207300362642376250385}{665662426933356484876281403693860699841963600691123419071058047984704644372} a^{25} + \frac{119696783288620158747756798505597010671173080484332125710481281723}{35034864575439814993488494931255826307471768457427548372160949893931823388} a^{24} + \frac{5922350232374305540720582751620105558616541985685783048707423856}{8758716143859953748372123732813956576867942114356887093040237473482955847} a^{23} + \frac{338104784650490254255326139258513653962372320799633166941739563498513}{1843940240812621841762552364802938226709040445127765703797944731259569652} a^{22} + \frac{2736982469619836705441810803148386559480612757047543915937374936428907}{17517432287719907496744247465627913153735884228713774186080474946965911694} a^{21} - \frac{797491995528586288264323034107570877350874927525441050784337141684921}{35034864575439814993488494931255826307471768457427548372160949893931823388} a^{20} - \frac{1569365878806590424419465514939798433928333937552408446071108102152001}{8758716143859953748372123732813956576867942114356887093040237473482955847} a^{19} - \frac{474298970518353845282574598540938309251228604562857914127502735057466}{8758716143859953748372123732813956576867942114356887093040237473482955847} a^{18} - \frac{2052435775084857257713815543962086339373888830694028841131928515307411}{17517432287719907496744247465627913153735884228713774186080474946965911694} a^{17} + \frac{12251170849581450516110134930337408073285597826500769929863105497844863}{35034864575439814993488494931255826307471768457427548372160949893931823388} a^{16} - \frac{9171774944680795174239791491857132494314899980382443430233105796932069}{921970120406310920881276182401469113354520222563882851898972365629784826} a^{15} - \frac{752334435450795414654321998357283835767199160677360318866399262329015}{1843940240812621841762552364802938226709040445127765703797944731259569652} a^{14} + \frac{18380403122604670886173078728196423593035389103396718430646994087558727}{1843940240812621841762552364802938226709040445127765703797944731259569652} a^{13} - \frac{1369511701868313671152666496039874978214025996738482953101914161546826}{460985060203155460440638091200734556677260111281941425949486182814892413} a^{12} + \frac{5746123376108011728792428738586562031585095090172796932956651923742206}{460985060203155460440638091200734556677260111281941425949486182814892413} a^{11} - \frac{58422674210903870130312302545528623151597032095497159870951024830991}{4680051372620867618686681128941467580479798084080623613700367338222258} a^{10} - \frac{4061697527042000034903572119698714358248646402471912506333334788525315}{1843940240812621841762552364802938226709040445127765703797944731259569652} a^{9} + \frac{33052668555615704641093622153406053816466211519326904208936198889273689}{921970120406310920881276182401469113354520222563882851898972365629784826} a^{8} + \frac{148300067374775968460516910352661071436060329963427756993446395676594275}{1843940240812621841762552364802938226709040445127765703797944731259569652} a^{7} - \frac{64800249658788414322076143668837825238688161284357092178896782227491}{542175901444463934655263853220505212204951615738831433048498891872852} a^{6} - \frac{13706912764334495046421512814500379882160649926640176748287102117278559}{97049486358559044303292229726470432984686339217250826515681301645240508} a^{5} + \frac{8609873331487423221324713699561957966149285655002695329703973935239188}{24262371589639761075823057431617608246171584804312706628920325411310127} a^{4} + \frac{47560472268932128874732216084423478439862883656736122338957308563040013}{97049486358559044303292229726470432984686339217250826515681301645240508} a^{3} + \frac{42177075974737837333095161598248943862479129305989052622141762503730643}{97049486358559044303292229726470432984686339217250826515681301645240508} a^{2} - \frac{12102024365991194320102937353745164900896681362972077080525699161852079}{24262371589639761075823057431617608246171584804312706628920325411310127} a + \frac{28320988803147854647222676119984903058380001289508552314050907539}{67450233111851943906749458224399135815593588974139997342065400068}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9861840342079951000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_9$ (as 27T2):
| An abelian group of order 27 |
| The 27 conjugacy class representatives for $C_3\times C_9$ |
| Character table for $C_3\times C_9$ is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 3.3.29241.2, 3.3.361.1, 3.3.29241.1, 9.9.25002110044521.1, 9.9.532962204162830310969.8, 9.9.532962204162830310969.6, 9.9.532962204162830310969.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{3}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{3}$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $19$ | 19.9.8.3 | $x^{9} - 77824$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
| 19.9.8.3 | $x^{9} - 77824$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |
| 19.9.8.3 | $x^{9} - 77824$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |