Normalized defining polynomial
\( x^{27} - 3 x^{26} - 162 x^{25} + 362 x^{24} + 11058 x^{23} - 17940 x^{22} - 417005 x^{21} + 475152 x^{20} + 9585783 x^{19} - 7334897 x^{18} - 140140161 x^{17} + 67545369 x^{16} + 1325068846 x^{15} - 360894987 x^{14} - 8127116829 x^{13} + 949692990 x^{12} + 32083489470 x^{11} + 34580448 x^{10} - 79891828714 x^{9} - 7402115451 x^{8} + 120762893079 x^{7} + 19715601263 x^{6} - 103424572098 x^{5} - 22163323110 x^{4} + 44013206071 x^{3} + 10730880483 x^{2} - 6912437058 x - 1834540021 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1197336751300349460100016353165918520894496565611371829528951009=3^{36}\cdot 7^{18}\cdot 19^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $216.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1197=3^{2}\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1197}(1024,·)$, $\chi_{1197}(1,·)$, $\chi_{1197}(898,·)$, $\chi_{1197}(4,·)$, $\chi_{1197}(904,·)$, $\chi_{1197}(226,·)$, $\chi_{1197}(256,·)$, $\chi_{1197}(655,·)$, $\chi_{1197}(16,·)$, $\chi_{1197}(403,·)$, $\chi_{1197}(25,·)$, $\chi_{1197}(463,·)$, $\chi_{1197}(1054,·)$, $\chi_{1197}(415,·)$, $\chi_{1197}(400,·)$, $\chi_{1197}(802,·)$, $\chi_{1197}(100,·)$, $\chi_{1197}(424,·)$, $\chi_{1197}(64,·)$, $\chi_{1197}(106,·)$, $\chi_{1197}(814,·)$, $\chi_{1197}(625,·)$, $\chi_{1197}(499,·)$, $\chi_{1197}(862,·)$, $\chi_{1197}(823,·)$, $\chi_{1197}(505,·)$, $\chi_{1197}(799,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{11} a^{21} - \frac{2}{11} a^{20} - \frac{4}{11} a^{19} + \frac{2}{11} a^{18} - \frac{5}{11} a^{16} + \frac{2}{11} a^{15} + \frac{5}{11} a^{14} + \frac{1}{11} a^{13} - \frac{3}{11} a^{11} + \frac{1}{11} a^{10} + \frac{5}{11} a^{9} - \frac{1}{11} a^{8} - \frac{1}{11} a^{7} - \frac{4}{11} a^{6} - \frac{4}{11} a^{5} - \frac{5}{11} a^{4} - \frac{2}{11} a^{3} - \frac{4}{11} a^{2} + \frac{3}{11} a - \frac{2}{11}$, $\frac{1}{11} a^{22} + \frac{3}{11} a^{20} + \frac{5}{11} a^{19} + \frac{4}{11} a^{18} - \frac{5}{11} a^{17} + \frac{3}{11} a^{16} - \frac{2}{11} a^{15} + \frac{2}{11} a^{13} - \frac{3}{11} a^{12} - \frac{5}{11} a^{11} - \frac{4}{11} a^{10} - \frac{2}{11} a^{9} - \frac{3}{11} a^{8} + \frac{5}{11} a^{7} - \frac{1}{11} a^{6} - \frac{2}{11} a^{5} - \frac{1}{11} a^{4} + \frac{3}{11} a^{3} - \frac{5}{11} a^{2} + \frac{4}{11} a - \frac{4}{11}$, $\frac{1}{1969} a^{23} + \frac{69}{1969} a^{22} - \frac{79}{1969} a^{21} + \frac{882}{1969} a^{20} + \frac{270}{1969} a^{19} + \frac{151}{1969} a^{18} - \frac{507}{1969} a^{17} - \frac{881}{1969} a^{16} + \frac{589}{1969} a^{15} + \frac{604}{1969} a^{14} - \frac{167}{1969} a^{13} + \frac{206}{1969} a^{12} - \frac{169}{1969} a^{11} + \frac{366}{1969} a^{10} + \frac{967}{1969} a^{9} + \frac{826}{1969} a^{8} + \frac{85}{1969} a^{7} - \frac{612}{1969} a^{6} + \frac{420}{1969} a^{5} - \frac{338}{1969} a^{4} - \frac{899}{1969} a^{3} + \frac{889}{1969} a^{2} + \frac{620}{1969} a - \frac{596}{1969}$, $\frac{1}{1885866851} a^{24} + \frac{469288}{1885866851} a^{23} - \frac{85090749}{1885866851} a^{22} + \frac{21963022}{1885866851} a^{21} + \frac{932263352}{1885866851} a^{20} + \frac{81829375}{1885866851} a^{19} - \frac{371262865}{1885866851} a^{18} - \frac{9971502}{171442441} a^{17} + \frac{5695061}{1885866851} a^{16} + \frac{202401172}{1885866851} a^{15} + \frac{598734688}{1885866851} a^{14} - \frac{113528213}{1885866851} a^{13} - \frac{176423097}{1885866851} a^{12} + \frac{879120444}{1885866851} a^{11} + \frac{48937004}{1885866851} a^{10} + \frac{59860525}{171442441} a^{9} - \frac{677633615}{1885866851} a^{8} + \frac{667111175}{1885866851} a^{7} + \frac{54167406}{1885866851} a^{6} - \frac{832948595}{1885866851} a^{5} + \frac{920010539}{1885866851} a^{4} - \frac{602561681}{1885866851} a^{3} - \frac{786635825}{1885866851} a^{2} + \frac{64219838}{171442441} a - \frac{677224085}{1885866851}$, $\frac{1}{214500381499591} a^{25} - \frac{5105}{214500381499591} a^{24} - \frac{36312915069}{214500381499591} a^{23} - \frac{3811911989351}{214500381499591} a^{22} + \frac{3289855453859}{214500381499591} a^{21} - \frac{17913561188390}{214500381499591} a^{20} + \frac{85813661989614}{214500381499591} a^{19} + \frac{14042072069430}{214500381499591} a^{18} - \frac{12473230698835}{214500381499591} a^{17} - \frac{5431375720474}{19500034681781} a^{16} + \frac{50984590441684}{214500381499591} a^{15} + \frac{20091075830335}{214500381499591} a^{14} - \frac{64609762275306}{214500381499591} a^{13} + \frac{47359848084121}{214500381499591} a^{12} - \frac{13049669392571}{214500381499591} a^{11} + \frac{88278921246504}{214500381499591} a^{10} + \frac{57150569999472}{214500381499591} a^{9} + \frac{27211007024929}{214500381499591} a^{8} + \frac{64367092602282}{214500381499591} a^{7} - \frac{74103561503076}{214500381499591} a^{6} - \frac{34684488330608}{214500381499591} a^{5} + \frac{49582523746531}{214500381499591} a^{4} + \frac{65859095045763}{214500381499591} a^{3} + \frac{30741514187614}{214500381499591} a^{2} - \frac{6684832378808}{214500381499591} a + \frac{834556032647}{19500034681781}$, $\frac{1}{31900239553351613571370559987990985045606671933737481805729087029200891348328505892397805818467644071889887} a^{26} + \frac{1417051672071787513673220055724897670622690267047077934877701582046406426952925858022608}{2382926686587854901872754163590870624158263384906064226916343245626420508577613049405976381449738109501} a^{25} + \frac{7032964213932274545031383746922947194181424716059473154524789041185894273842323590411955771706945}{31900239553351613571370559987990985045606671933737481805729087029200891348328505892397805818467644071889887} a^{24} - \frac{867316645658494029975996321629607733311365797424426984843087481933507522773710941363121090732596088571}{31900239553351613571370559987990985045606671933737481805729087029200891348328505892397805818467644071889887} a^{23} - \frac{321604677138613449294015830040214115913594664905505793733505251808706889942866068052120630231843782403615}{31900239553351613571370559987990985045606671933737481805729087029200891348328505892397805818467644071889887} a^{22} - \frac{83600962458383040376597193591827284494900158799000201617893936092805064326785202801340823865465663222256}{31900239553351613571370559987990985045606671933737481805729087029200891348328505892397805818467644071889887} a^{21} - \frac{3789776396120740387805309849196583440840255842754096821613440115817367966450574676948133014111515701542521}{31900239553351613571370559987990985045606671933737481805729087029200891348328505892397805818467644071889887} a^{20} - \frac{15573711193321786388321977543413880509109951003479398744557550954710162665321291230412218787838628559483197}{31900239553351613571370559987990985045606671933737481805729087029200891348328505892397805818467644071889887} a^{19} + \frac{790997877576656739785501003837021040010494617921246413510015824700402724356083788648056560831285301811071}{31900239553351613571370559987990985045606671933737481805729087029200891348328505892397805818467644071889887} a^{18} - \frac{12683292387515473025663025716551390225159251340946608467958051014921187599544016459770699589696491150915655}{31900239553351613571370559987990985045606671933737481805729087029200891348328505892397805818467644071889887} a^{17} - \frac{334969706702455353928579600718467829095515611015614995129723234179948121875539961169401227630707028406889}{31900239553351613571370559987990985045606671933737481805729087029200891348328505892397805818467644071889887} a^{16} - \frac{10450283847645211259843051351152957026499685074287981740596116240691436698843301958072322149023363454172979}{31900239553351613571370559987990985045606671933737481805729087029200891348328505892397805818467644071889887} a^{15} - \frac{1098789629118241278817403294840842582416042242787202527457060567074155169090837262954061689635872924885815}{2900021777577419415579141817090089549600606539430680164157189729927353758938955081127073256224331279262717} a^{14} - \frac{241103537133820864887411389098943420907000895058718051088684035096694102801245383217652591888433912107706}{31900239553351613571370559987990985045606671933737481805729087029200891348328505892397805818467644071889887} a^{13} - \frac{6789640500556391931913760137095132212097335975458396872757123001314536949709385147036230890177797570724413}{31900239553351613571370559987990985045606671933737481805729087029200891348328505892397805818467644071889887} a^{12} + \frac{10573195224394599102783036982637258725743858706023780188993650077082565798774980660581535576110542665760980}{31900239553351613571370559987990985045606671933737481805729087029200891348328505892397805818467644071889887} a^{11} - \frac{5322590337770954967482114712307775524478275769155456248231194769113349823232938650137111564343660773630512}{31900239553351613571370559987990985045606671933737481805729087029200891348328505892397805818467644071889887} a^{10} - \frac{4427425997547026512879034091671494613302468695434759254401394464459519411905387208692486180119988862966472}{31900239553351613571370559987990985045606671933737481805729087029200891348328505892397805818467644071889887} a^{9} - \frac{6407213931363039259433113276872761323741955673967404517962315821632996506366601414621760042619789352794634}{31900239553351613571370559987990985045606671933737481805729087029200891348328505892397805818467644071889887} a^{8} + \frac{5508795981181754472293405034348474812389733000542684833064946809332129683071332798845193058512838961084255}{31900239553351613571370559987990985045606671933737481805729087029200891348328505892397805818467644071889887} a^{7} + \frac{10511811944604678690428272059441898519318594340966240493645488767824857766510692650209128567114708110266669}{31900239553351613571370559987990985045606671933737481805729087029200891348328505892397805818467644071889887} a^{6} + \frac{3284845563227292339639508611569191708138579501148959830566573542697989563524913047537049403803704507691699}{31900239553351613571370559987990985045606671933737481805729087029200891348328505892397805818467644071889887} a^{5} - \frac{578963634909851981483863201085306835429763805651092989848812904094772447033789741704265806891459346943601}{2900021777577419415579141817090089549600606539430680164157189729927353758938955081127073256224331279262717} a^{4} + \frac{441045155372770711545035102663213305602046726788299691973235053785880306242390032627590438810363666220074}{2900021777577419415579141817090089549600606539430680164157189729927353758938955081127073256224331279262717} a^{3} + \frac{6388032416438258383162272168621867587017651532346373916599338930453661729415619876744741416630539477473527}{31900239553351613571370559987990985045606671933737481805729087029200891348328505892397805818467644071889887} a^{2} + \frac{1194684731156980383752133847632151756620790953544485134728440629211747473091541253628909004159656436140444}{2900021777577419415579141817090089549600606539430680164157189729927353758938955081127073256224331279262717} a + \frac{2703258871645717780420611100504373500878580265250799075818213657958601517708856520141720634409362175783537}{31900239553351613571370559987990985045606671933737481805729087029200891348328505892397805818467644071889887}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30503747567527345000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_9$ (as 27T2):
| An abelian group of order 27 |
| The 27 conjugacy class representatives for $C_3\times C_9$ |
| Character table for $C_3\times C_9$ is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 3.3.361.1, 3.3.29241.1, 3.3.29241.2, 9.9.25002110044521.1, 9.9.1998099208210609.1, 9.9.1061871841310654257569.5, 9.9.1061871841310654257569.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{3}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{3}$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $19$ | 19.9.8.3 | $x^{9} - 77824$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
| 19.9.8.3 | $x^{9} - 77824$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |
| 19.9.8.3 | $x^{9} - 77824$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |