Normalized defining polynomial
\( x^{27} - 3 x^{26} - 210 x^{25} + 341 x^{24} + 19761 x^{23} - 5319 x^{22} - 1071027 x^{21} - 1072779 x^{20} + 35785290 x^{19} + 79547261 x^{18} - 727641144 x^{17} - 2617308423 x^{16} + 7915049615 x^{15} + 47517477258 x^{14} - 16231036935 x^{13} - 470794277397 x^{12} - 610037882562 x^{11} + 2029302136221 x^{10} + 6315551962953 x^{9} + 1612960677906 x^{8} - 17452227111315 x^{7} - 30692199651546 x^{6} - 18015765483522 x^{5} + 2873413735140 x^{4} + 6984224959239 x^{3} + 1384579835685 x^{2} - 495953919873 x - 77502107663 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1197336751300349460100016353165918520894496565611371829528951009=3^{36}\cdot 7^{18}\cdot 19^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $216.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1197=3^{2}\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1197}(64,·)$, $\chi_{1197}(1,·)$, $\chi_{1197}(1033,·)$, $\chi_{1197}(970,·)$, $\chi_{1197}(655,·)$, $\chi_{1197}(529,·)$, $\chi_{1197}(403,·)$, $\chi_{1197}(340,·)$, $\chi_{1197}(277,·)$, $\chi_{1197}(214,·)$, $\chi_{1197}(121,·)$, $\chi_{1197}(25,·)$, $\chi_{1197}(883,·)$, $\chi_{1197}(442,·)$, $\chi_{1197}(940,·)$, $\chi_{1197}(814,·)$, $\chi_{1197}(688,·)$, $\chi_{1197}(625,·)$, $\chi_{1197}(562,·)$, $\chi_{1197}(499,·)$, $\chi_{1197}(757,·)$, $\chi_{1197}(310,·)$, $\chi_{1197}(631,·)$, $\chi_{1197}(568,·)$, $\chi_{1197}(505,·)$, $\chi_{1197}(58,·)$, $\chi_{1197}(253,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{17} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{17} - \frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{20} - \frac{1}{2} a^{17} - \frac{1}{2} a^{16} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{21} - \frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{22} - \frac{1}{2} a^{15} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{23} - \frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{24} - \frac{1}{2} a^{17} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{22} a^{25} - \frac{5}{22} a^{24} - \frac{3}{22} a^{23} - \frac{3}{22} a^{21} + \frac{1}{11} a^{19} + \frac{3}{22} a^{18} + \frac{5}{22} a^{17} - \frac{1}{2} a^{16} + \frac{7}{22} a^{15} - \frac{7}{22} a^{14} - \frac{2}{11} a^{13} + \frac{1}{11} a^{12} + \frac{4}{11} a^{11} + \frac{5}{22} a^{9} + \frac{9}{22} a^{8} - \frac{5}{11} a^{7} + \frac{3}{11} a^{6} - \frac{9}{22} a^{5} + \frac{4}{11} a^{4} + \frac{3}{11} a^{2} - \frac{1}{22} a + \frac{9}{22}$, $\frac{1}{546928725792031623763625816007427681949795042570377204556420038308465665043527573565459988093230320726346282016266143807021070726353849408426} a^{26} - \frac{943690202068695147532960928523106054650356653288136947803305656846652052821612272425816498326793332030341154724219034362956257760304153129}{546928725792031623763625816007427681949795042570377204556420038308465665043527573565459988093230320726346282016266143807021070726353849408426} a^{25} - \frac{89942792260507129923494982550111284429002493990548198848851028889888495843377123509763735621744812015135794973643543476983251196936354346551}{546928725792031623763625816007427681949795042570377204556420038308465665043527573565459988093230320726346282016266143807021070726353849408426} a^{24} - \frac{4047216328864968143921206930850326100427034209007594242257364519669617380532844221146459219422079587250898205568444227396026618666422337883}{273464362896015811881812908003713840974897521285188602278210019154232832521763786782729994046615160363173141008133071903510535363176924704213} a^{23} + \frac{95040945925840187971326875442392885378493420508182011979792136403384794247109878333578547370652729863394454838309857401249774551028363259697}{546928725792031623763625816007427681949795042570377204556420038308465665043527573565459988093230320726346282016266143807021070726353849408426} a^{22} - \frac{18016065171931277797900368040610463076492158161230628481421500275599037597942745602417413339150206570123517431875128772218147026307903122973}{546928725792031623763625816007427681949795042570377204556420038308465665043527573565459988093230320726346282016266143807021070726353849408426} a^{21} + \frac{120485275348255198006504630246240736419180712116051565191984762064711629962886509919076012721731689211424111397849463499451404184579639229413}{546928725792031623763625816007427681949795042570377204556420038308465665043527573565459988093230320726346282016266143807021070726353849408426} a^{20} + \frac{43289413762031489699560966641055511332461014143270338939284130035658734111747648813906557529092459275554542733083271599345037518867742637732}{273464362896015811881812908003713840974897521285188602278210019154232832521763786782729994046615160363173141008133071903510535363176924704213} a^{19} + \frac{10933305757842776870895665162654122169146420796033932702763353759854365704371310432212175943910408480602928063391051942907429514949853189600}{273464362896015811881812908003713840974897521285188602278210019154232832521763786782729994046615160363173141008133071903510535363176924704213} a^{18} + \frac{56545314930912937505774655676362735633310507702432227373491280437406132666018487797204391089247121290586943654118938480981469347364204411192}{273464362896015811881812908003713840974897521285188602278210019154232832521763786782729994046615160363173141008133071903510535363176924704213} a^{17} + \frac{132308375730134121303934820354828219348000356366329450872859376058503746640832445986901591751539411494606704606475851011070721170893732446199}{273464362896015811881812908003713840974897521285188602278210019154232832521763786782729994046615160363173141008133071903510535363176924704213} a^{16} + \frac{2176317130153256311389889278839564295380050448415398406471486946397424091563349900460327090848315087825985064639369558248845817034865112271}{24860396626910528352892082545792167361354320116835327479837274468566621138342162434793635822419560033015740091648461082137321396652447700383} a^{15} + \frac{9917762544790249228346266100106399175669609524273371693690599315012956831723966984821834023701388694884931752597441265989155281729416318943}{24860396626910528352892082545792167361354320116835327479837274468566621138342162434793635822419560033015740091648461082137321396652447700383} a^{14} + \frac{133571689050025381170408649790038396752814884036765591476035844658506042979506835495649833109247509743748076797287361109552763375625336621150}{273464362896015811881812908003713840974897521285188602278210019154232832521763786782729994046615160363173141008133071903510535363176924704213} a^{13} + \frac{51744551883360224489805274392885892004394145058350923152624402445018326976238282760912084981125384975429566367120136593353329110541592899333}{273464362896015811881812908003713840974897521285188602278210019154232832521763786782729994046615160363173141008133071903510535363176924704213} a^{12} - \frac{50776805007897476581791615903913098373651796235673446240477562228778703001402356763969556814443327187275094215473648881181761723063774966775}{546928725792031623763625816007427681949795042570377204556420038308465665043527573565459988093230320726346282016266143807021070726353849408426} a^{11} - \frac{51642553694073217151702609102483524555079283886564552339304882864296026156900955881983464431907538834993464723629243398787797040969185826319}{546928725792031623763625816007427681949795042570377204556420038308465665043527573565459988093230320726346282016266143807021070726353849408426} a^{10} + \frac{112913918936457173442443776986940144765105787485431285752633569042137064712672836955216513789420985566050201153866822046172592382810210515869}{546928725792031623763625816007427681949795042570377204556420038308465665043527573565459988093230320726346282016266143807021070726353849408426} a^{9} - \frac{85250091022321127166919519208777999106044192653522552538288958952180504445375691548687580338289346372381988360679693718507665061795533993549}{546928725792031623763625816007427681949795042570377204556420038308465665043527573565459988093230320726346282016266143807021070726353849408426} a^{8} - \frac{110325991695542546104066407611408243155060856032038171367420389080435195939196659081317264667482636984538894058553857233162902369555233108135}{546928725792031623763625816007427681949795042570377204556420038308465665043527573565459988093230320726346282016266143807021070726353849408426} a^{7} + \frac{11463261701041482569781369662837220484609971687491263676495464153448124354471018210468790159305599014506177602587392962017072621815465497677}{273464362896015811881812908003713840974897521285188602278210019154232832521763786782729994046615160363173141008133071903510535363176924704213} a^{6} - \frac{106151835608137324709771489464223641999684283212134712987404560422349405453456632979312034818221555102876417804364286796288169690246658081830}{273464362896015811881812908003713840974897521285188602278210019154232832521763786782729994046615160363173141008133071903510535363176924704213} a^{5} - \frac{154447213486110836678137939636603878549135323150054548044823217396294670432994088402794113159987222363981926234470394411190273730693278555341}{546928725792031623763625816007427681949795042570377204556420038308465665043527573565459988093230320726346282016266143807021070726353849408426} a^{4} + \frac{174484172151624970103651539827340440121277985947264535370724001869718488135408363710084367198695478732864120820933561514507257717817638378103}{546928725792031623763625816007427681949795042570377204556420038308465665043527573565459988093230320726346282016266143807021070726353849408426} a^{3} + \frac{246566056969197847967440539998208140045210189088776174776258711911868818798143379604767604480816325680847656240852185376959168235180428130819}{546928725792031623763625816007427681949795042570377204556420038308465665043527573565459988093230320726346282016266143807021070726353849408426} a^{2} + \frac{120206175599059969728758537962988281784635477486880802791307109569885609234654919379011721098097436555637138073298254940412496282962183018987}{273464362896015811881812908003713840974897521285188602278210019154232832521763786782729994046615160363173141008133071903510535363176924704213} a + \frac{38026598068405803561894557923654092725867005523261806621498041872707731527656814548324481781652368705925350187293138878012096255806893758486}{273464362896015811881812908003713840974897521285188602278210019154232832521763786782729994046615160363173141008133071903510535363176924704213}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 21303579559761460000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_9$ (as 27T2):
| An abelian group of order 27 |
| The 27 conjugacy class representatives for $C_3\times C_9$ |
| Character table for $C_3\times C_9$ is not computed |
Intermediate fields
| 3.3.1432809.4, 3.3.361.1, 3.3.3969.1, 3.3.1432809.1, 9.9.2941473244627851129.10, 9.9.1061871841310654257569.1, 9.9.1061871841310654257569.5, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{3}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{3}$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 19 | Data not computed | ||||||