Normalized defining polynomial
\( x^{27} - 999 x^{25} + 443556 x^{23} - 115336881 x^{21} + 19481903595 x^{19} - 2241127346283 x^{17} + 179005600103112 x^{15} - 9934810805722716 x^{13} + 377261368227838926 x^{11} - 9478109683254965610 x^{9} + 148527554095242519912 x^{7} - 1311430790136402704223 x^{5} + 5391437692782988895139 x^{3} - 6576369053834195245719 x - 894239309602828075753 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11940677720052639937823094663962830546187812969131075398124270924891510801=3^{94}\cdot 37^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $508.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2997=3^{4}\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2997}(1,·)$, $\chi_{2997}(898,·)$, $\chi_{2997}(2563,·)$, $\chi_{2997}(1543,·)$, $\chi_{2997}(1897,·)$, $\chi_{2997}(1666,·)$, $\chi_{2997}(334,·)$, $\chi_{2997}(1999,·)$, $\chi_{2997}(2896,·)$, $\chi_{2997}(211,·)$, $\chi_{2997}(1876,·)$, $\chi_{2997}(2542,·)$, $\chi_{2997}(667,·)$, $\chi_{2997}(2332,·)$, $\chi_{2997}(544,·)$, $\chi_{2997}(2209,·)$, $\chi_{2997}(232,·)$, $\chi_{2997}(1564,·)$, $\chi_{2997}(877,·)$, $\chi_{2997}(1231,·)$, $\chi_{2997}(1000,·)$, $\chi_{2997}(565,·)$, $\chi_{2997}(2230,·)$, $\chi_{2997}(2665,·)$, $\chi_{2997}(1210,·)$, $\chi_{2997}(2875,·)$, $\chi_{2997}(1333,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{37} a^{3}$, $\frac{1}{37} a^{4}$, $\frac{1}{37} a^{5}$, $\frac{1}{1369} a^{6}$, $\frac{1}{1369} a^{7}$, $\frac{1}{1369} a^{8}$, $\frac{1}{50653} a^{9}$, $\frac{1}{50653} a^{10}$, $\frac{1}{50653} a^{11}$, $\frac{1}{1874161} a^{12}$, $\frac{1}{1874161} a^{13}$, $\frac{1}{23520576239603} a^{14} - \frac{3487439}{23520576239603} a^{13} - \frac{14}{635691249719} a^{12} - \frac{4862985}{635691249719} a^{11} + \frac{77}{17180844587} a^{10} - \frac{3942231}{635691249719} a^{9} - \frac{210}{464347151} a^{8} - \frac{578584}{17180844587} a^{7} + \frac{294}{12549923} a^{6} - \frac{3508293}{464347151} a^{5} - \frac{7252}{12549923} a^{4} - \frac{4121156}{464347151} a^{3} + \frac{67081}{12549923} a^{2} + \frac{5967275}{12549923} a - \frac{101306}{12549923}$, $\frac{1}{870261320865311} a^{15} - \frac{15}{23520576239603} a^{13} - \frac{3487439}{23520576239603} a^{12} + \frac{90}{635691249719} a^{11} + \frac{4199499}{635691249719} a^{10} - \frac{275}{17180844587} a^{9} - \frac{72861}{17180844587} a^{8} + \frac{450}{464347151} a^{7} - \frac{5564080}{17180844587} a^{6} - \frac{378}{12549923} a^{5} + \frac{5216325}{464347151} a^{4} + \frac{5180}{12549923} a^{3} + \frac{1797238}{12549923} a^{2} - \frac{20535}{12549923} a + \frac{1883421}{12549923}$, $\frac{1}{870261320865311} a^{16} - \frac{5599332}{23520576239603} a^{13} - \frac{120}{635691249719} a^{12} - \frac{5995661}{635691249719} a^{11} + \frac{880}{17180844587} a^{10} + \frac{920293}{635691249719} a^{9} - \frac{2700}{464347151} a^{8} - \frac{1692917}{17180844587} a^{7} + \frac{4032}{12549923} a^{6} + \frac{2791622}{464347151} a^{5} - \frac{103600}{12549923} a^{4} + \frac{4680466}{464347151} a^{3} + \frac{985680}{12549923} a^{2} + \frac{3543085}{12549923} a - \frac{1519590}{12549923}$, $\frac{1}{870261320865311} a^{17} - \frac{136}{635691249719} a^{13} + \frac{2637394}{23520576239603} a^{12} + \frac{1088}{17180844587} a^{11} + \frac{2465028}{635691249719} a^{10} - \frac{3740}{464347151} a^{9} + \frac{2080484}{17180844587} a^{8} - \frac{3613091}{17180844587} a^{7} + \frac{3207257}{17180844587} a^{6} + \frac{4730195}{464347151} a^{5} - \frac{3897234}{464347151} a^{4} - \frac{2728379}{464347151} a^{3} + \frac{5687510}{12549923} a^{2} + \frac{494509}{12549923} a - \frac{1957915}{12549923}$, $\frac{1}{32199668872016507} a^{18} + \frac{6068522}{23520576239603} a^{13} - \frac{816}{635691249719} a^{12} - \frac{3615535}{635691249719} a^{11} + \frac{6732}{17180844587} a^{10} + \frac{5583757}{635691249719} a^{9} - \frac{22032}{464347151} a^{8} + \frac{4160913}{17180844587} a^{7} - \frac{3281324}{17180844587} a^{6} + \frac{1699018}{464347151} a^{5} + \frac{4136649}{464347151} a^{4} - \frac{2593094}{464347151} a^{3} - \frac{3752729}{12549923} a^{2} + \frac{839295}{12549923} a - \frac{1227693}{12549923}$, $\frac{1}{32199668872016507} a^{19} - \frac{969}{635691249719} a^{13} - \frac{2261919}{23520576239603} a^{12} + \frac{8721}{17180844587} a^{11} - \frac{22350}{5941039717} a^{10} - \frac{6126744}{635691249719} a^{9} - \frac{6033781}{17180844587} a^{8} + \frac{4294122}{17180844587} a^{7} - \frac{3917535}{17180844587} a^{6} + \frac{3665244}{464347151} a^{5} + \frac{94630}{464347151} a^{4} + \frac{1644211}{464347151} a^{3} + \frac{167364}{12549923} a^{2} - \frac{1577126}{12549923} a - \frac{5388269}{12549923}$, $\frac{1}{32199668872016507} a^{20} - \frac{2529537}{23520576239603} a^{13} + \frac{5917118}{23520576239603} a^{12} + \frac{1087584}{635691249719} a^{11} - \frac{4380931}{635691249719} a^{10} - \frac{926500}{635691249719} a^{9} + \frac{1814618}{17180844587} a^{8} - \frac{2866968}{17180844587} a^{7} - \frac{4516017}{17180844587} a^{6} + \frac{5143930}{464347151} a^{5} - \frac{5335143}{464347151} a^{4} + \frac{629879}{464347151} a^{3} - \frac{6107249}{12549923} a^{2} + \frac{784925}{12549923} a - \frac{5196271}{12549923}$, $\frac{1}{1191387748264610759} a^{21} - \frac{5985}{635691249719} a^{13} + \frac{3323835}{23520576239603} a^{12} + \frac{57456}{17180844587} a^{11} - \frac{4353524}{635691249719} a^{10} + \frac{771102}{635691249719} a^{9} + \frac{24441}{464347151} a^{8} - \frac{2908935}{17180844587} a^{7} - \frac{533723}{17180844587} a^{6} - \frac{1641452}{464347151} a^{5} + \frac{1427816}{464347151} a^{4} + \frac{2767157}{464347151} a^{3} + \frac{1618842}{12549923} a^{2} + \frac{4551790}{12549923} a + \frac{1685190}{12549923}$, $\frac{1}{1191387748264610759} a^{22} - \frac{543792}{23520576239603} a^{13} + \frac{1598523}{23520576239603} a^{12} - \frac{4274065}{635691249719} a^{11} + \frac{4171757}{635691249719} a^{10} + \frac{6209891}{635691249719} a^{9} - \frac{4197134}{17180844587} a^{8} - \frac{2903696}{17180844587} a^{7} + \frac{975015}{17180844587} a^{6} - \frac{2082177}{464347151} a^{5} - \frac{4905541}{464347151} a^{4} + \frac{5607756}{464347151} a^{3} + \frac{195003}{12549923} a^{2} + \frac{5855126}{12549923} a + \frac{5555154}{12549923}$, $\frac{1}{1191387748264610759} a^{23} + \frac{4134211}{23520576239603} a^{13} - \frac{577356}{23520576239603} a^{12} - \frac{99793}{17180844587} a^{11} - \frac{717153}{635691249719} a^{10} - \frac{5627820}{635691249719} a^{9} + \frac{1156515}{17180844587} a^{8} - \frac{1805903}{17180844587} a^{7} - \frac{3731219}{17180844587} a^{6} + \frac{2522171}{464347151} a^{5} - \frac{1432054}{464347151} a^{4} - \frac{4698331}{464347151} a^{3} + \frac{1340117}{12549923} a^{2} + \frac{3671382}{12549923} a + \frac{4769618}{12549923}$, $\frac{1}{44081346685790598083} a^{24} + \frac{3181296}{23520576239603} a^{13} + \frac{3986921}{23520576239603} a^{12} - \frac{2911755}{635691249719} a^{11} + \frac{5437338}{635691249719} a^{10} - \frac{3401264}{635691249719} a^{9} + \frac{5921873}{17180844587} a^{8} - \frac{1847772}{17180844587} a^{7} - \frac{3050978}{17180844587} a^{6} - \frac{996774}{464347151} a^{5} - \frac{3986728}{464347151} a^{4} - \frac{6035437}{464347151} a^{3} - \frac{4617221}{12549923} a^{2} - \frac{1579393}{12549923} a - \frac{560828}{12549923}$, $\frac{1}{44081346685790598083} a^{25} - \frac{4001363}{23520576239603} a^{13} - \frac{3464136}{23520576239603} a^{12} - \frac{3664277}{635691249719} a^{11} - \frac{158626}{17180844587} a^{10} - \frac{4680220}{635691249719} a^{9} + \frac{6023761}{17180844587} a^{8} - \frac{3092832}{17180844587} a^{7} + \frac{4661196}{17180844587} a^{6} + \frac{4428717}{464347151} a^{5} + \frac{3919776}{464347151} a^{4} + \frac{6050050}{464347151} a^{3} + \frac{5344246}{12549923} a^{2} - \frac{2523432}{12549923} a + \frac{2349936}{12549923}$, $\frac{1}{44081346685790598083} a^{26} - \frac{2461333}{23520576239603} a^{13} + \frac{502165}{23520576239603} a^{12} + \frac{6194245}{635691249719} a^{11} - \frac{127117}{635691249719} a^{10} - \frac{863458}{635691249719} a^{9} + \frac{5025852}{17180844587} a^{8} + \frac{1996783}{17180844587} a^{7} - \frac{666873}{17180844587} a^{6} + \frac{4936604}{464347151} a^{5} + \frac{2787011}{464347151} a^{4} + \frac{3226862}{464347151} a^{3} - \frac{4845153}{12549923} a^{2} + \frac{3244421}{12549923} a + \frac{432822}{12549923}$
Class group and class number
Not computed
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 27 |
| The 27 conjugacy class representatives for $C_{27}$ |
| Character table for $C_{27}$ is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $27$ | R | $27$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{3}$ | $27$ | $27$ | $27$ | R | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{27}$ | $27$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $37$ | 37.9.6.3 | $x^{9} - 74 x^{6} + 1369 x^{3} - 202612$ | $3$ | $3$ | $6$ | $C_9$ | $[\ ]_{3}^{3}$ |
| 37.9.6.3 | $x^{9} - 74 x^{6} + 1369 x^{3} - 202612$ | $3$ | $3$ | $6$ | $C_9$ | $[\ ]_{3}^{3}$ | |
| 37.9.6.3 | $x^{9} - 74 x^{6} + 1369 x^{3} - 202612$ | $3$ | $3$ | $6$ | $C_9$ | $[\ ]_{3}^{3}$ | |