Normalized defining polynomial
\( x^{27} - 3 x^{26} - 168 x^{25} + 572 x^{24} + 11610 x^{23} - 45264 x^{22} - 425713 x^{21} + 1939944 x^{20} + 8773131 x^{19} - 49261956 x^{18} - 94362513 x^{17} + 759872085 x^{16} + 275657276 x^{15} - 6982699857 x^{14} + 4569640299 x^{13} + 35528125026 x^{12} - 50785958448 x^{11} - 83218822605 x^{10} + 196283403790 x^{9} + 38975332611 x^{8} - 318723893835 x^{7} + 128423804151 x^{6} + 180395569233 x^{5} - 141722795001 x^{4} - 4007013731 x^{3} + 28531403934 x^{2} - 8074445220 x + 668804824 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1187411143908093381248555091925855631936617111126489321417190047281=3^{36}\cdot 109^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $280.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(981=3^{2}\cdot 109\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{981}(256,·)$, $\chi_{981}(1,·)$, $\chi_{981}(214,·)$, $\chi_{981}(838,·)$, $\chi_{981}(583,·)$, $\chi_{981}(136,·)$, $\chi_{981}(910,·)$, $\chi_{981}(655,·)$, $\chi_{981}(16,·)$, $\chi_{981}(790,·)$, $\chi_{981}(343,·)$, $\chi_{981}(154,·)$, $\chi_{981}(463,·)$, $\chi_{981}(541,·)$, $\chi_{981}(670,·)$, $\chi_{981}(481,·)$, $\chi_{981}(868,·)$, $\chi_{981}(808,·)$, $\chi_{981}(172,·)$, $\chi_{981}(175,·)$, $\chi_{981}(328,·)$, $\chi_{981}(499,·)$, $\chi_{981}(502,·)$, $\chi_{981}(184,·)$, $\chi_{981}(826,·)$, $\chi_{981}(829,·)$, $\chi_{981}(511,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{15} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{19} - \frac{1}{4} a^{5}$, $\frac{1}{16} a^{20} - \frac{1}{16} a^{19} - \frac{1}{8} a^{17} + \frac{1}{16} a^{16} + \frac{1}{16} a^{15} - \frac{1}{8} a^{14} + \frac{1}{16} a^{13} + \frac{1}{8} a^{12} + \frac{1}{16} a^{11} - \frac{1}{8} a^{10} + \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{3}{16} a^{7} - \frac{3}{16} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{3}{16} a^{3} - \frac{3}{16} a^{2} + \frac{1}{4}$, $\frac{1}{16} a^{21} - \frac{1}{16} a^{19} - \frac{1}{8} a^{18} - \frac{1}{16} a^{17} - \frac{1}{8} a^{16} - \frac{1}{16} a^{15} - \frac{1}{16} a^{14} - \frac{1}{16} a^{13} + \frac{3}{16} a^{12} + \frac{3}{16} a^{11} - \frac{1}{16} a^{10} + \frac{3}{16} a^{9} + \frac{3}{16} a^{8} - \frac{1}{8} a^{7} - \frac{5}{16} a^{6} - \frac{1}{2} a^{5} - \frac{7}{16} a^{4} - \frac{1}{4} a^{3} - \frac{7}{16} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{16} a^{22} + \frac{1}{16} a^{19} - \frac{1}{16} a^{18} + \frac{1}{16} a^{14} + \frac{1}{16} a^{12} - \frac{1}{4} a^{11} - \frac{3}{16} a^{10} - \frac{1}{4} a^{7} - \frac{7}{16} a^{6} + \frac{7}{16} a^{5} - \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{7}{16} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{16} a^{23} - \frac{1}{8} a^{17} - \frac{1}{16} a^{16} - \frac{1}{8} a^{14} - \frac{1}{8} a^{12} - \frac{1}{4} a^{11} - \frac{1}{8} a^{10} - \frac{1}{16} a^{9} + \frac{1}{8} a^{8} - \frac{1}{4} a^{7} + \frac{3}{8} a^{6} - \frac{1}{2} a^{5} - \frac{3}{8} a^{4} - \frac{3}{8} a^{3} + \frac{7}{16} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{237063968} a^{24} + \frac{3796025}{237063968} a^{23} - \frac{7117823}{237063968} a^{22} - \frac{2085593}{118531984} a^{21} - \frac{67601}{29632996} a^{20} + \frac{13209299}{237063968} a^{19} - \frac{1081491}{237063968} a^{18} - \frac{8205013}{237063968} a^{17} - \frac{16632773}{237063968} a^{16} + \frac{2619767}{29632996} a^{15} + \frac{17100189}{237063968} a^{14} + \frac{5508055}{59265992} a^{13} - \frac{6786031}{237063968} a^{12} + \frac{4544177}{59265992} a^{11} - \frac{1887317}{14816498} a^{10} + \frac{15984775}{237063968} a^{9} - \frac{11867587}{59265992} a^{8} - \frac{386185}{118531984} a^{7} - \frac{115631635}{237063968} a^{6} - \frac{29639283}{237063968} a^{5} - \frac{987857}{14816498} a^{4} + \frac{99590533}{237063968} a^{3} - \frac{47489749}{118531984} a^{2} - \frac{982455}{59265992} a + \frac{4061839}{29632996}$, $\frac{1}{196051901536} a^{25} + \frac{133}{98025950768} a^{24} - \frac{38385153}{24506487692} a^{23} + \frac{1178537765}{196051901536} a^{22} + \frac{205128749}{98025950768} a^{21} + \frac{3594286681}{196051901536} a^{20} + \frac{5654723369}{49012975384} a^{19} - \frac{8698664687}{98025950768} a^{18} - \frac{5251968247}{98025950768} a^{17} - \frac{23615330845}{196051901536} a^{16} + \frac{8681275991}{196051901536} a^{15} - \frac{19010128773}{196051901536} a^{14} + \frac{23950861623}{196051901536} a^{13} + \frac{46983724351}{196051901536} a^{12} + \frac{15837499295}{98025950768} a^{11} - \frac{15176864975}{196051901536} a^{10} + \frac{30184017239}{196051901536} a^{9} + \frac{6514075675}{98025950768} a^{8} + \frac{2674606057}{196051901536} a^{7} + \frac{33953305303}{98025950768} a^{6} - \frac{8911145957}{196051901536} a^{5} + \frac{51193079405}{196051901536} a^{4} + \frac{82870622129}{196051901536} a^{3} + \frac{5481791319}{49012975384} a^{2} - \frac{15491906505}{49012975384} a + \frac{3438944}{7408249}$, $\frac{1}{11434940886164358814378596437420670433795647361837538353092001848234020614853016955147921236559994346976} a^{26} + \frac{5014387388194250344733312450493302208541429214130349393345154829148422180545961513224589231}{2858735221541089703594649109355167608448911840459384588273000462058505153713254238786980309139998586744} a^{25} - \frac{10752032579509967595725624862117664341803468904169193774817636861003203930942343270405024325751}{11434940886164358814378596437420670433795647361837538353092001848234020614853016955147921236559994346976} a^{24} + \frac{27795473024877173317592640363650293528242623997788565736052871014458448184790593604618228919821205065}{2858735221541089703594649109355167608448911840459384588273000462058505153713254238786980309139998586744} a^{23} - \frac{181835531874403466192203602676431287181589190141192772388499136627716391671893194280029656732765152949}{11434940886164358814378596437420670433795647361837538353092001848234020614853016955147921236559994346976} a^{22} - \frac{262874444841163755074731486122308055326690291988342916435233545887940645879312242970780858065821270849}{11434940886164358814378596437420670433795647361837538353092001848234020614853016955147921236559994346976} a^{21} + \frac{333815062865026349983991547261149329941952198890717354890717746488384564338570668224228800474207771}{69725249305880236673040222179394331913388093669741087518853669806305003749103761921633666076585331384} a^{20} - \frac{1038572189325019175306690334803170666808446899435283884679621972531446063033880353755240540754471232671}{11434940886164358814378596437420670433795647361837538353092001848234020614853016955147921236559994346976} a^{19} + \frac{823293849769643642657629873904419787451136762871909539310022400685740227662498947292222924802212454877}{11434940886164358814378596437420670433795647361837538353092001848234020614853016955147921236559994346976} a^{18} + \frac{655184940874455890802012319662536086300075888098588037756287930107440355013544293947144651028532902353}{5717470443082179407189298218710335216897823680918769176546000924117010307426508477573960618279997173488} a^{17} - \frac{2257347160497617743705489775715718798376211042063474949653004095097611106500016161142493579348817790}{357341902692636212949331138669395951056113980057423073534125057757313144214156779848372538642499823343} a^{16} + \frac{1190120309947902607257923252587004708033228599511913016171740354145311615962800800498964116959667425107}{11434940886164358814378596437420670433795647361837538353092001848234020614853016955147921236559994346976} a^{15} + \frac{333564844188837264436505624752066581659187196747089542497326118684982413711057104325024592075402001805}{2858735221541089703594649109355167608448911840459384588273000462058505153713254238786980309139998586744} a^{14} + \frac{389238417945475462011376069887453244956305611567906784216418757044479935338549375986611376502662767395}{11434940886164358814378596437420670433795647361837538353092001848234020614853016955147921236559994346976} a^{13} - \frac{1320081069509609490241477570119229854536406906782885921625332441633912653756608894437114327089809602145}{11434940886164358814378596437420670433795647361837538353092001848234020614853016955147921236559994346976} a^{12} - \frac{2188182488648470494663460779875285897818265875454773255516288103074013743455023793165106061644453873845}{11434940886164358814378596437420670433795647361837538353092001848234020614853016955147921236559994346976} a^{11} - \frac{403253950821589154591354301845311898254949366157022666171754039390567191182466304112946060987304349249}{11434940886164358814378596437420670433795647361837538353092001848234020614853016955147921236559994346976} a^{10} - \frac{796450696444534738003865352013856603636299050809073671256617887636801626543618034320610268213189161729}{11434940886164358814378596437420670433795647361837538353092001848234020614853016955147921236559994346976} a^{9} - \frac{345707248420563254043260700425065993937228933977385951855394015425631981607555142415945751590388215979}{11434940886164358814378596437420670433795647361837538353092001848234020614853016955147921236559994346976} a^{8} - \frac{651332534012695520877198242526622584408117711798388403480058310935577655230964185252652472163212599777}{2858735221541089703594649109355167608448911840459384588273000462058505153713254238786980309139998586744} a^{7} - \frac{201050143908968923273571161563434784877887989566583069123821032112276852222553270023337419286661189017}{714683805385272425898662277338791902112227960114846147068250115514626288428313559696745077284999646686} a^{6} + \frac{15501220503237372748818210588942254959092878906380105869094807992102156884043752757139085711155733103}{5717470443082179407189298218710335216897823680918769176546000924117010307426508477573960618279997173488} a^{5} + \frac{4590396067376088557509188328782128795299737906916721592347935034941813996754374789655176789184189026459}{11434940886164358814378596437420670433795647361837538353092001848234020614853016955147921236559994346976} a^{4} - \frac{2325085475310991682830704539517443755873603369992080359968849706285221961944634790080808633908072853499}{11434940886164358814378596437420670433795647361837538353092001848234020614853016955147921236559994346976} a^{3} - \frac{100073551237489711260017977233489031769874860243709449526284233198239257963260063832688567411590212633}{2858735221541089703594649109355167608448911840459384588273000462058505153713254238786980309139998586744} a^{2} + \frac{1077423855999738237967334057888661705796451819465201424652941866083745382587373591001885482875884800175}{2858735221541089703594649109355167608448911840459384588273000462058505153713254238786980309139998586744} a - \frac{10560137873170383255055236643998036504629296620686269691691800142899595291115922450830751739065399}{432094199144662893530025560664324003695421983140777597985640940456243221540697436334186866556831709}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5431785827487784000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_9$ (as 27T2):
| An abelian group of order 27 |
| The 27 conjugacy class representatives for $C_3\times C_9$ |
| Character table for $C_3\times C_9$ is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 3.3.11881.1, 3.3.962361.1, 3.3.962361.2, 9.9.891279760005451881.2, 9.9.10589294828624773798161.4, 9.9.10589294828624773798161.3, 9.9.19925626416901921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{9}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $109$ | 109.9.8.1 | $x^{9} - 109$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
| 109.9.8.1 | $x^{9} - 109$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |
| 109.9.8.1 | $x^{9} - 109$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |