Normalized defining polynomial
\( x^{27} - x^{26} - 182 x^{25} + 117 x^{24} + 13618 x^{23} - 9406 x^{22} - 563442 x^{21} + 525111 x^{20} + 14278105 x^{19} - 18161357 x^{18} - 227967713 x^{17} + 379632386 x^{16} + 2241789500 x^{15} - 4722897643 x^{14} - 12462752110 x^{13} + 33279114690 x^{12} + 31181666728 x^{11} - 119083238707 x^{10} - 8689190338 x^{9} + 181478462936 x^{8} - 57176007802 x^{7} - 75331044168 x^{6} + 18626907295 x^{5} + 11999475590 x^{4} - 1573415186 x^{3} - 576163073 x^{2} + 46387161 x + 743723 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11082033513026159843197131857404812003970296978813351756002427720121=379^{26}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $304.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $379$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(379\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{379}(1,·)$, $\chi_{379}(107,·)$, $\chi_{379}(197,·)$, $\chi_{379}(193,·)$, $\chi_{379}(87,·)$, $\chi_{379}(268,·)$, $\chi_{379}(271,·)$, $\chi_{379}(115,·)$, $\chi_{379}(339,·)$, $\chi_{379}(84,·)$, $\chi_{379}(213,·)$, $\chi_{379}(151,·)$, $\chi_{379}(24,·)$, $\chi_{379}(79,·)$, $\chi_{379}(294,·)$, $\chi_{379}(234,·)$, $\chi_{379}(327,·)$, $\chi_{379}(239,·)$, $\chi_{379}(368,·)$, $\chi_{379}(177,·)$, $\chi_{379}(51,·)$, $\chi_{379}(180,·)$, $\chi_{379}(310,·)$, $\chi_{379}(121,·)$, $\chi_{379}(185,·)$, $\chi_{379}(251,·)$, $\chi_{379}(61,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $\frac{1}{1644343} a^{25} + \frac{285392}{1644343} a^{24} + \frac{418997}{1644343} a^{23} + \frac{168997}{1644343} a^{22} - \frac{351984}{1644343} a^{21} + \frac{650417}{1644343} a^{20} - \frac{350047}{1644343} a^{19} - \frac{366452}{1644343} a^{18} - \frac{612969}{1644343} a^{17} + \frac{229079}{1644343} a^{16} + \frac{752260}{1644343} a^{15} + \frac{803280}{1644343} a^{14} - \frac{528441}{1644343} a^{13} - \frac{424053}{1644343} a^{12} - \frac{5151}{1644343} a^{11} - \frac{556278}{1644343} a^{10} - \frac{616106}{1644343} a^{9} - \frac{95058}{1644343} a^{8} - \frac{544618}{1644343} a^{7} - \frac{345408}{1644343} a^{6} - \frac{380487}{1644343} a^{5} - \frac{357566}{1644343} a^{4} - \frac{326459}{1644343} a^{3} + \frac{54545}{1644343} a^{2} + \frac{724040}{1644343} a + \frac{643601}{1644343}$, $\frac{1}{9574948526058979840283468959867935119927547199892452315774801562515778484324983430401990606361135526553747196037} a^{26} + \frac{1458397269910909849747390366438531924255575060102568753334347016097421150985988201231662060786694132637215}{9574948526058979840283468959867935119927547199892452315774801562515778484324983430401990606361135526553747196037} a^{25} - \frac{4485456882438848765965477690852605773108049511806486823909770129283128614798266131830658998394324082944725359566}{9574948526058979840283468959867935119927547199892452315774801562515778484324983430401990606361135526553747196037} a^{24} - \frac{981906382867142106721983216630624907108841123251578671411940260157825856848394155337815189194432335325403270498}{9574948526058979840283468959867935119927547199892452315774801562515778484324983430401990606361135526553747196037} a^{23} + \frac{1402576220449004816792015674430260906459553374772271199386788635112419363996040957647735486445051047058640137608}{9574948526058979840283468959867935119927547199892452315774801562515778484324983430401990606361135526553747196037} a^{22} - \frac{4258117810354197935566416252542477117299858692538532123155297121709026634726225229315592934466509854221696312814}{9574948526058979840283468959867935119927547199892452315774801562515778484324983430401990606361135526553747196037} a^{21} - \frac{888322801472192033792290769694127537973080140613905180408176974965825612370957008697426447266015393669514575423}{9574948526058979840283468959867935119927547199892452315774801562515778484324983430401990606361135526553747196037} a^{20} + \frac{4359255797419501543381279787178190485876213324476866710754903483530978429208040359744773466661790010282848741727}{9574948526058979840283468959867935119927547199892452315774801562515778484324983430401990606361135526553747196037} a^{19} - \frac{4572042581248360416646472764751202267670092706007995568953680193550818451543478473243634157089813449177828859254}{9574948526058979840283468959867935119927547199892452315774801562515778484324983430401990606361135526553747196037} a^{18} + \frac{3154677079537835402431520133127397153724334084892852936167790327805422667101707278628449141043508929316542135511}{9574948526058979840283468959867935119927547199892452315774801562515778484324983430401990606361135526553747196037} a^{17} + \frac{424109828959056352973431724913671558824679341186619110025592222511116863279010591213607087533084236448778737393}{9574948526058979840283468959867935119927547199892452315774801562515778484324983430401990606361135526553747196037} a^{16} - \frac{2423409373972688667233513505947177939268256165224898132645583596300721529396450715549421670212208721109033765944}{9574948526058979840283468959867935119927547199892452315774801562515778484324983430401990606361135526553747196037} a^{15} - \frac{4421796752777721433929243654083180494041775004669596913995566488409543082946444748239903599816746148692826131334}{9574948526058979840283468959867935119927547199892452315774801562515778484324983430401990606361135526553747196037} a^{14} - \frac{3993637041254019275253424750403839466823815253754221276615635167150323830620121181706780802073352055503970408868}{9574948526058979840283468959867935119927547199892452315774801562515778484324983430401990606361135526553747196037} a^{13} - \frac{1092125242001768321098346903671239145687863859844353735462554330516238728016089064187042141368213199798983880423}{9574948526058979840283468959867935119927547199892452315774801562515778484324983430401990606361135526553747196037} a^{12} - \frac{3808308654804855422463336136053717126968753331401268807424207551253938716244707478806255261662431879936401321949}{9574948526058979840283468959867935119927547199892452315774801562515778484324983430401990606361135526553747196037} a^{11} - \frac{3424335587944851688575719590706302897305058062724940438338171011462619862535136175769969753798411446707697515384}{9574948526058979840283468959867935119927547199892452315774801562515778484324983430401990606361135526553747196037} a^{10} + \frac{1055849552766577625247988025922645366805187851764510211654343003886938467060214578830532187759080360532542568055}{9574948526058979840283468959867935119927547199892452315774801562515778484324983430401990606361135526553747196037} a^{9} + \frac{2587124334656382138093622744440077819548277041097226938269935466342268339939932871306161099155343099049893304466}{9574948526058979840283468959867935119927547199892452315774801562515778484324983430401990606361135526553747196037} a^{8} + \frac{816385945169506239812159514588476024498869652215808478115962084521238961492871013944680172576162917299029792367}{9574948526058979840283468959867935119927547199892452315774801562515778484324983430401990606361135526553747196037} a^{7} + \frac{1336304842062600098811910300888216715283568766678365328514650341321858043963674626418051939137048643912240463156}{9574948526058979840283468959867935119927547199892452315774801562515778484324983430401990606361135526553747196037} a^{6} + \frac{4664283476887947199230172986509290404476482830086150685201355300980617009004611243270933521251251305117041946811}{9574948526058979840283468959867935119927547199892452315774801562515778484324983430401990606361135526553747196037} a^{5} - \frac{2900281402481214447330182187375236353052529047053300692418874503762111566923379354947623265288438643052482919175}{9574948526058979840283468959867935119927547199892452315774801562515778484324983430401990606361135526553747196037} a^{4} + \frac{1117718367655391570262353783795855133816925227415604464883339665578284621175818745482482639056500151234228750805}{9574948526058979840283468959867935119927547199892452315774801562515778484324983430401990606361135526553747196037} a^{3} - \frac{96955927132638882897400472107786759933182928303846487894856586648459478452605481924491354262024836876610013752}{9574948526058979840283468959867935119927547199892452315774801562515778484324983430401990606361135526553747196037} a^{2} - \frac{1862194079134591859378432557218636011403307825296095404046160331880806344308747563278490877376044464166926291198}{9574948526058979840283468959867935119927547199892452315774801562515778484324983430401990606361135526553747196037} a + \frac{757010107300000319633699348141949699176317415061983696588490843909263306367878930894449846162616180156255254566}{9574948526058979840283468959867935119927547199892452315774801562515778484324983430401990606361135526553747196037}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6288288434413969000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 27 |
| The 27 conjugacy class representatives for $C_{27}$ |
| Character table for $C_{27}$ is not computed |
Intermediate fields
| 3.3.143641.1, 9.9.425709831200577608161.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $27$ | $27$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{9}$ | $27$ | $27$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{3}$ | $27$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{3}$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{3}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 379 | Data not computed | ||||||