Properties

Label 27.1.929...947.1
Degree $27$
Signature $[1, 13]$
Discriminant $-9.298\times 10^{50}$
Root discriminant \(77.22\)
Ramified primes $7,563$
Class number $6$ (GRH)
Class group [6] (GRH)
Galois group $D_{27}$ (as 27T8)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^27 - 11*x^26 + 7*x^25 + 393*x^24 - 1777*x^23 - 1339*x^22 + 33149*x^21 - 122161*x^20 + 301221*x^19 - 901165*x^18 + 2771309*x^17 - 5696089*x^16 + 7240134*x^15 - 11573472*x^14 + 45471960*x^13 - 153604016*x^12 + 357338624*x^11 - 615897728*x^10 + 876134656*x^9 - 1154442240*x^8 + 1414654976*x^7 - 1520924672*x^6 + 1526870016*x^5 - 1494863872*x^4 + 1216438272*x^3 - 684785664*x^2 + 248741888*x - 73596928)
 
gp: K = bnfinit(y^27 - 11*y^26 + 7*y^25 + 393*y^24 - 1777*y^23 - 1339*y^22 + 33149*y^21 - 122161*y^20 + 301221*y^19 - 901165*y^18 + 2771309*y^17 - 5696089*y^16 + 7240134*y^15 - 11573472*y^14 + 45471960*y^13 - 153604016*y^12 + 357338624*y^11 - 615897728*y^10 + 876134656*y^9 - 1154442240*y^8 + 1414654976*y^7 - 1520924672*y^6 + 1526870016*y^5 - 1494863872*y^4 + 1216438272*y^3 - 684785664*y^2 + 248741888*y - 73596928, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^27 - 11*x^26 + 7*x^25 + 393*x^24 - 1777*x^23 - 1339*x^22 + 33149*x^21 - 122161*x^20 + 301221*x^19 - 901165*x^18 + 2771309*x^17 - 5696089*x^16 + 7240134*x^15 - 11573472*x^14 + 45471960*x^13 - 153604016*x^12 + 357338624*x^11 - 615897728*x^10 + 876134656*x^9 - 1154442240*x^8 + 1414654976*x^7 - 1520924672*x^6 + 1526870016*x^5 - 1494863872*x^4 + 1216438272*x^3 - 684785664*x^2 + 248741888*x - 73596928);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 11*x^26 + 7*x^25 + 393*x^24 - 1777*x^23 - 1339*x^22 + 33149*x^21 - 122161*x^20 + 301221*x^19 - 901165*x^18 + 2771309*x^17 - 5696089*x^16 + 7240134*x^15 - 11573472*x^14 + 45471960*x^13 - 153604016*x^12 + 357338624*x^11 - 615897728*x^10 + 876134656*x^9 - 1154442240*x^8 + 1414654976*x^7 - 1520924672*x^6 + 1526870016*x^5 - 1494863872*x^4 + 1216438272*x^3 - 684785664*x^2 + 248741888*x - 73596928)
 

\( x^{27} - 11 x^{26} + 7 x^{25} + 393 x^{24} - 1777 x^{23} - 1339 x^{22} + 33149 x^{21} - 122161 x^{20} + \cdots - 73596928 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $27$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 13]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-929766412363569678535445062868135961189021577764947\) \(\medspace = -\,7^{18}\cdot 563^{13}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(77.22\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $7^{2/3}563^{1/2}\approx 86.82661914013458$
Ramified primes:   \(7\), \(563\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-563}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{5}+\frac{1}{4}a^{3}-\frac{1}{4}a^{2}$, $\frac{1}{4}a^{7}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{8}-\frac{1}{4}a^{2}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{3}$, $\frac{1}{16}a^{10}+\frac{1}{16}a^{9}-\frac{1}{8}a^{7}-\frac{1}{8}a^{6}-\frac{3}{16}a^{4}-\frac{3}{16}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{16}a^{11}-\frac{1}{16}a^{9}-\frac{1}{8}a^{8}-\frac{1}{8}a^{6}+\frac{1}{16}a^{5}+\frac{7}{16}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}$, $\frac{1}{16}a^{12}-\frac{1}{16}a^{9}-\frac{1}{16}a^{6}-\frac{1}{4}a^{5}+\frac{1}{16}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{32}a^{13}-\frac{1}{32}a^{10}-\frac{1}{8}a^{9}+\frac{3}{32}a^{7}+\frac{5}{32}a^{4}-\frac{1}{8}a^{3}+\frac{1}{4}a^{2}-\frac{1}{4}a$, $\frac{1}{64}a^{14}-\frac{1}{64}a^{11}+\frac{1}{16}a^{9}+\frac{3}{64}a^{8}-\frac{1}{8}a^{7}-\frac{1}{8}a^{6}-\frac{11}{64}a^{5}-\frac{1}{4}a^{4}+\frac{7}{16}a^{3}-\frac{3}{8}a^{2}-\frac{1}{2}$, $\frac{1}{256}a^{15}-\frac{5}{256}a^{12}-\frac{1}{32}a^{11}-\frac{1}{32}a^{10}+\frac{19}{256}a^{9}-\frac{3}{32}a^{8}+\frac{1}{256}a^{6}+\frac{5}{32}a^{5}-\frac{3}{16}a^{4}+\frac{1}{8}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}$, $\frac{1}{512}a^{16}-\frac{5}{512}a^{13}+\frac{1}{64}a^{12}-\frac{1}{64}a^{11}+\frac{3}{512}a^{10}+\frac{1}{64}a^{9}+\frac{33}{512}a^{7}-\frac{1}{64}a^{6}-\frac{3}{32}a^{5}-\frac{3}{32}a^{4}+\frac{1}{8}a^{3}-\frac{1}{2}a^{2}+\frac{1}{8}a$, $\frac{1}{1024}a^{17}-\frac{5}{1024}a^{14}+\frac{1}{128}a^{13}-\frac{1}{128}a^{12}+\frac{3}{1024}a^{11}+\frac{1}{128}a^{10}+\frac{33}{1024}a^{8}+\frac{15}{128}a^{7}+\frac{5}{64}a^{6}+\frac{13}{64}a^{5}+\frac{3}{16}a^{4}+\frac{3}{8}a^{3}+\frac{5}{16}a^{2}$, $\frac{1}{1024}a^{18}-\frac{1}{1024}a^{15}-\frac{1}{128}a^{14}-\frac{1}{128}a^{13}-\frac{17}{1024}a^{12}-\frac{1}{128}a^{11}-\frac{1}{32}a^{10}+\frac{45}{1024}a^{9}-\frac{3}{128}a^{8}-\frac{3}{64}a^{7}+\frac{21}{256}a^{6}+\frac{1}{64}a^{5}+\frac{3}{16}a^{4}-\frac{1}{4}a^{3}+\frac{3}{8}a^{2}+\frac{1}{4}$, $\frac{1}{1024}a^{19}-\frac{1}{1024}a^{16}-\frac{1}{128}a^{14}+\frac{15}{1024}a^{13}+\frac{1}{64}a^{12}-\frac{1}{32}a^{11}+\frac{13}{1024}a^{10}-\frac{1}{16}a^{9}-\frac{7}{64}a^{8}+\frac{13}{256}a^{7}-\frac{5}{128}a^{6}+\frac{1}{16}a^{5}-\frac{5}{32}a^{4}+\frac{1}{16}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{20480}a^{20}+\frac{7}{20480}a^{19}-\frac{7}{20480}a^{18}+\frac{3}{20480}a^{17}-\frac{3}{20480}a^{16}-\frac{1}{4096}a^{15}+\frac{43}{20480}a^{14}+\frac{157}{20480}a^{13}+\frac{603}{20480}a^{12}-\frac{319}{20480}a^{11}+\frac{59}{4096}a^{10}-\frac{407}{20480}a^{9}-\frac{23}{320}a^{8}-\frac{237}{2560}a^{7}+\frac{239}{2560}a^{6}-\frac{1}{8}a^{5}+\frac{63}{320}a^{4}+\frac{159}{320}a^{3}-\frac{19}{40}a^{2}-\frac{17}{40}a-\frac{7}{40}$, $\frac{1}{81920}a^{21}+\frac{1}{81920}a^{20}-\frac{29}{81920}a^{19}-\frac{7}{16384}a^{18}-\frac{21}{81920}a^{17}-\frac{7}{81920}a^{16}+\frac{153}{81920}a^{15}+\frac{379}{81920}a^{14}-\frac{39}{81920}a^{13}-\frac{977}{81920}a^{12}+\frac{2209}{81920}a^{11}+\frac{1283}{81920}a^{10}+\frac{761}{8192}a^{9}+\frac{187}{10240}a^{8}-\frac{529}{10240}a^{7}+\frac{493}{5120}a^{6}+\frac{223}{1280}a^{5}-\frac{79}{1280}a^{4}-\frac{193}{640}a^{3}-\frac{3}{160}a^{2}+\frac{9}{32}a-\frac{29}{80}$, $\frac{1}{163840}a^{22}-\frac{1}{163840}a^{21}+\frac{1}{163840}a^{20}-\frac{73}{163840}a^{19}+\frac{13}{32768}a^{18}-\frac{29}{163840}a^{17}+\frac{71}{163840}a^{16}-\frac{7}{163840}a^{15}+\frac{739}{163840}a^{14}-\frac{455}{32768}a^{13}+\frac{1139}{163840}a^{12}+\frac{897}{163840}a^{11}+\frac{741}{40960}a^{10}-\frac{1827}{40960}a^{9}-\frac{1291}{20480}a^{8}+\frac{1}{1024}a^{7}+\frac{5}{1024}a^{6}+\frac{79}{512}a^{5}-\frac{153}{640}a^{4}-\frac{121}{640}a^{3}+\frac{143}{320}a^{2}+\frac{37}{80}a-\frac{27}{80}$, $\frac{1}{655360}a^{23}-\frac{1}{655360}a^{22}-\frac{3}{655360}a^{21}+\frac{3}{655360}a^{20}-\frac{219}{655360}a^{19}-\frac{289}{655360}a^{18}+\frac{15}{131072}a^{17}+\frac{101}{655360}a^{16}+\frac{207}{655360}a^{15}+\frac{5089}{655360}a^{14}-\frac{237}{131072}a^{13}+\frac{1745}{131072}a^{12}+\frac{629}{20480}a^{11}-\frac{401}{16384}a^{10}-\frac{493}{40960}a^{9}+\frac{271}{2560}a^{8}-\frac{403}{10240}a^{7}-\frac{51}{1280}a^{6}-\frac{37}{320}a^{5}+\frac{49}{1280}a^{4}-\frac{67}{640}a^{3}-\frac{9}{32}a^{2}+\frac{3}{20}a+\frac{59}{160}$, $\frac{1}{56360960}a^{24}-\frac{13}{56360960}a^{23}-\frac{47}{56360960}a^{22}-\frac{337}{56360960}a^{21}-\frac{1319}{56360960}a^{20}+\frac{17483}{56360960}a^{19}-\frac{1821}{11272192}a^{18}+\frac{1769}{56360960}a^{17}-\frac{229}{56360960}a^{16}+\frac{106181}{56360960}a^{15}-\frac{116773}{56360960}a^{14}-\frac{10279}{56360960}a^{13}-\frac{80353}{2818048}a^{12}+\frac{70923}{3522560}a^{11}-\frac{22369}{1761280}a^{10}-\frac{97827}{880640}a^{9}+\frac{24789}{220160}a^{8}+\frac{37299}{440320}a^{7}-\frac{185}{5504}a^{6}-\frac{7051}{55040}a^{5}-\frac{577}{27520}a^{4}+\frac{257}{6880}a^{3}-\frac{727}{13760}a^{2}+\frac{529}{13760}a-\frac{1019}{3440}$, $\frac{1}{141466009600}a^{25}+\frac{423}{141466009600}a^{24}-\frac{60927}{141466009600}a^{23}+\frac{366687}{141466009600}a^{22}-\frac{663047}{141466009600}a^{21}-\frac{1768309}{141466009600}a^{20}+\frac{6932819}{28293201920}a^{19}-\frac{21271727}{141466009600}a^{18}+\frac{20167323}{141466009600}a^{17}+\frac{130105589}{141466009600}a^{16}+\frac{83873147}{141466009600}a^{15}-\frac{6938719}{5658640384}a^{14}+\frac{72618983}{35366502400}a^{13}+\frac{15509509}{35366502400}a^{12}-\frac{180241603}{8841625600}a^{11}+\frac{30115279}{2210406400}a^{10}-\frac{247488621}{2210406400}a^{9}-\frac{12324203}{110520320}a^{8}-\frac{71869}{1381504}a^{7}+\frac{1007317}{27630080}a^{6}+\frac{5235779}{138150400}a^{5}-\frac{1911407}{8634400}a^{4}+\frac{792099}{17268800}a^{3}-\frac{16807717}{34537600}a^{2}+\frac{3946809}{8634400}a-\frac{1250577}{8634400}$, $\frac{1}{49\!\cdots\!00}a^{26}+\frac{11\!\cdots\!19}{49\!\cdots\!00}a^{25}-\frac{23\!\cdots\!79}{49\!\cdots\!00}a^{24}-\frac{66\!\cdots\!29}{99\!\cdots\!60}a^{23}+\frac{62\!\cdots\!13}{19\!\cdots\!92}a^{22}+\frac{25\!\cdots\!59}{49\!\cdots\!00}a^{21}-\frac{11\!\cdots\!09}{49\!\cdots\!00}a^{20}+\frac{83\!\cdots\!73}{49\!\cdots\!00}a^{19}+\frac{23\!\cdots\!71}{49\!\cdots\!00}a^{18}-\frac{15\!\cdots\!83}{49\!\cdots\!00}a^{17}-\frac{14\!\cdots\!59}{16\!\cdots\!00}a^{16}-\frac{36\!\cdots\!83}{49\!\cdots\!00}a^{15}-\frac{65\!\cdots\!17}{12\!\cdots\!00}a^{14}+\frac{64\!\cdots\!37}{77\!\cdots\!00}a^{13}-\frac{79\!\cdots\!39}{20\!\cdots\!00}a^{12}+\frac{18\!\cdots\!47}{77\!\cdots\!00}a^{11}-\frac{46\!\cdots\!51}{38\!\cdots\!00}a^{10}-\frac{25\!\cdots\!93}{38\!\cdots\!00}a^{9}+\frac{11\!\cdots\!67}{97\!\cdots\!04}a^{8}+\frac{37\!\cdots\!07}{48\!\cdots\!20}a^{7}-\frac{65\!\cdots\!39}{16\!\cdots\!00}a^{6}-\frac{21\!\cdots\!89}{15\!\cdots\!00}a^{5}-\frac{11\!\cdots\!41}{83\!\cdots\!40}a^{4}+\frac{46\!\cdots\!81}{12\!\cdots\!00}a^{3}-\frac{11\!\cdots\!59}{30\!\cdots\!00}a^{2}-\frac{13\!\cdots\!71}{37\!\cdots\!00}a-\frac{66\!\cdots\!41}{15\!\cdots\!00}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$, $5$

Class group and class number

$C_{6}$, which has order $6$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $13$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{21\!\cdots\!29}{49\!\cdots\!00}a^{26}-\frac{21\!\cdots\!37}{49\!\cdots\!00}a^{25}-\frac{88\!\cdots\!23}{99\!\cdots\!60}a^{24}+\frac{84\!\cdots\!51}{49\!\cdots\!00}a^{23}-\frac{30\!\cdots\!11}{49\!\cdots\!00}a^{22}-\frac{57\!\cdots\!93}{49\!\cdots\!00}a^{21}+\frac{66\!\cdots\!31}{49\!\cdots\!00}a^{20}-\frac{20\!\cdots\!43}{49\!\cdots\!00}a^{19}+\frac{91\!\cdots\!99}{99\!\cdots\!60}a^{18}-\frac{15\!\cdots\!51}{49\!\cdots\!00}a^{17}+\frac{14\!\cdots\!17}{16\!\cdots\!00}a^{16}-\frac{79\!\cdots\!83}{49\!\cdots\!00}a^{15}+\frac{19\!\cdots\!57}{12\!\cdots\!00}a^{14}-\frac{21\!\cdots\!03}{62\!\cdots\!00}a^{13}+\frac{32\!\cdots\!63}{20\!\cdots\!00}a^{12}-\frac{99\!\cdots\!99}{19\!\cdots\!00}a^{11}+\frac{82\!\cdots\!49}{77\!\cdots\!20}a^{10}-\frac{63\!\cdots\!43}{38\!\cdots\!00}a^{9}+\frac{42\!\cdots\!43}{19\!\cdots\!80}a^{8}-\frac{54\!\cdots\!41}{19\!\cdots\!08}a^{7}+\frac{55\!\cdots\!09}{16\!\cdots\!00}a^{6}-\frac{39\!\cdots\!41}{12\!\cdots\!00}a^{5}+\frac{13\!\cdots\!11}{41\!\cdots\!00}a^{4}-\frac{74\!\cdots\!71}{24\!\cdots\!60}a^{3}+\frac{61\!\cdots\!93}{30\!\cdots\!00}a^{2}-\frac{10\!\cdots\!47}{15\!\cdots\!00}a+\frac{17\!\cdots\!09}{15\!\cdots\!00}$, $\frac{87\!\cdots\!31}{12\!\cdots\!00}a^{26}-\frac{91\!\cdots\!17}{12\!\cdots\!00}a^{25}-\frac{67\!\cdots\!47}{12\!\cdots\!00}a^{24}+\frac{35\!\cdots\!87}{12\!\cdots\!00}a^{23}-\frac{13\!\cdots\!47}{12\!\cdots\!00}a^{22}-\frac{22\!\cdots\!29}{12\!\cdots\!00}a^{21}+\frac{13\!\cdots\!89}{57\!\cdots\!80}a^{20}-\frac{87\!\cdots\!27}{12\!\cdots\!00}a^{19}+\frac{19\!\cdots\!03}{12\!\cdots\!00}a^{18}-\frac{64\!\cdots\!11}{12\!\cdots\!00}a^{17}+\frac{63\!\cdots\!97}{40\!\cdots\!00}a^{16}-\frac{69\!\cdots\!67}{24\!\cdots\!40}a^{15}+\frac{17\!\cdots\!91}{62\!\cdots\!00}a^{14}-\frac{18\!\cdots\!91}{31\!\cdots\!00}a^{13}+\frac{28\!\cdots\!03}{10\!\cdots\!00}a^{12}-\frac{34\!\cdots\!77}{38\!\cdots\!00}a^{11}+\frac{71\!\cdots\!03}{38\!\cdots\!00}a^{10}-\frac{11\!\cdots\!93}{38\!\cdots\!60}a^{9}+\frac{46\!\cdots\!29}{12\!\cdots\!80}a^{8}-\frac{49\!\cdots\!91}{97\!\cdots\!40}a^{7}+\frac{25\!\cdots\!61}{41\!\cdots\!00}a^{6}-\frac{35\!\cdots\!61}{60\!\cdots\!00}a^{5}+\frac{12\!\cdots\!19}{20\!\cdots\!00}a^{4}-\frac{43\!\cdots\!13}{75\!\cdots\!00}a^{3}+\frac{54\!\cdots\!73}{15\!\cdots\!00}a^{2}-\frac{55\!\cdots\!01}{37\!\cdots\!00}a+\frac{13\!\cdots\!67}{30\!\cdots\!72}$, $\frac{13\!\cdots\!27}{12\!\cdots\!00}a^{26}-\frac{62\!\cdots\!57}{62\!\cdots\!00}a^{25}-\frac{53\!\cdots\!37}{62\!\cdots\!00}a^{24}+\frac{25\!\cdots\!57}{62\!\cdots\!00}a^{23}-\frac{77\!\cdots\!37}{62\!\cdots\!00}a^{22}-\frac{21\!\cdots\!89}{62\!\cdots\!00}a^{21}+\frac{18\!\cdots\!13}{62\!\cdots\!60}a^{20}-\frac{51\!\cdots\!17}{62\!\cdots\!00}a^{19}+\frac{11\!\cdots\!23}{62\!\cdots\!00}a^{18}-\frac{40\!\cdots\!61}{62\!\cdots\!00}a^{17}+\frac{37\!\cdots\!87}{20\!\cdots\!00}a^{16}-\frac{37\!\cdots\!63}{12\!\cdots\!20}a^{15}+\frac{34\!\cdots\!29}{12\!\cdots\!00}a^{14}-\frac{23\!\cdots\!17}{31\!\cdots\!00}a^{13}+\frac{36\!\cdots\!61}{10\!\cdots\!00}a^{12}-\frac{51\!\cdots\!83}{48\!\cdots\!00}a^{11}+\frac{40\!\cdots\!33}{19\!\cdots\!00}a^{10}-\frac{30\!\cdots\!79}{97\!\cdots\!40}a^{9}+\frac{80\!\cdots\!41}{19\!\cdots\!80}a^{8}-\frac{13\!\cdots\!53}{24\!\cdots\!60}a^{7}+\frac{51\!\cdots\!19}{83\!\cdots\!00}a^{6}-\frac{11\!\cdots\!41}{18\!\cdots\!00}a^{5}+\frac{64\!\cdots\!89}{10\!\cdots\!00}a^{4}-\frac{85\!\cdots\!87}{15\!\cdots\!00}a^{3}+\frac{10\!\cdots\!77}{30\!\cdots\!00}a^{2}-\frac{90\!\cdots\!79}{75\!\cdots\!00}a+\frac{70\!\cdots\!91}{15\!\cdots\!60}$, $\frac{47\!\cdots\!13}{57\!\cdots\!00}a^{26}-\frac{21\!\cdots\!11}{24\!\cdots\!00}a^{25}+\frac{12\!\cdots\!83}{24\!\cdots\!00}a^{24}+\frac{78\!\cdots\!49}{24\!\cdots\!00}a^{23}-\frac{30\!\cdots\!89}{24\!\cdots\!00}a^{22}-\frac{86\!\cdots\!59}{49\!\cdots\!80}a^{21}+\frac{63\!\cdots\!57}{24\!\cdots\!00}a^{20}-\frac{21\!\cdots\!33}{24\!\cdots\!00}a^{19}+\frac{50\!\cdots\!53}{24\!\cdots\!00}a^{18}-\frac{15\!\cdots\!13}{24\!\cdots\!00}a^{17}+\frac{15\!\cdots\!51}{80\!\cdots\!00}a^{16}-\frac{91\!\cdots\!41}{24\!\cdots\!00}a^{15}+\frac{26\!\cdots\!87}{62\!\cdots\!00}a^{14}-\frac{12\!\cdots\!67}{15\!\cdots\!00}a^{13}+\frac{16\!\cdots\!27}{50\!\cdots\!44}a^{12}-\frac{41\!\cdots\!63}{38\!\cdots\!00}a^{11}+\frac{92\!\cdots\!89}{38\!\cdots\!00}a^{10}-\frac{38\!\cdots\!53}{97\!\cdots\!00}a^{9}+\frac{26\!\cdots\!39}{48\!\cdots\!52}a^{8}-\frac{68\!\cdots\!13}{97\!\cdots\!40}a^{7}+\frac{70\!\cdots\!79}{83\!\cdots\!00}a^{6}-\frac{13\!\cdots\!07}{15\!\cdots\!60}a^{5}+\frac{21\!\cdots\!59}{24\!\cdots\!00}a^{4}-\frac{50\!\cdots\!67}{60\!\cdots\!00}a^{3}+\frac{19\!\cdots\!61}{30\!\cdots\!20}a^{2}-\frac{46\!\cdots\!89}{15\!\cdots\!60}a+\frac{26\!\cdots\!09}{37\!\cdots\!00}$, $\frac{81\!\cdots\!53}{62\!\cdots\!00}a^{26}-\frac{30\!\cdots\!27}{24\!\cdots\!40}a^{25}-\frac{12\!\cdots\!01}{12\!\cdots\!00}a^{24}+\frac{62\!\cdots\!53}{12\!\cdots\!00}a^{23}-\frac{19\!\cdots\!73}{12\!\cdots\!00}a^{22}-\frac{52\!\cdots\!63}{12\!\cdots\!00}a^{21}+\frac{46\!\cdots\!47}{12\!\cdots\!00}a^{20}-\frac{12\!\cdots\!17}{12\!\cdots\!00}a^{19}+\frac{29\!\cdots\!49}{12\!\cdots\!00}a^{18}-\frac{20\!\cdots\!21}{24\!\cdots\!40}a^{17}+\frac{19\!\cdots\!43}{80\!\cdots\!40}a^{16}-\frac{47\!\cdots\!21}{12\!\cdots\!00}a^{15}+\frac{45\!\cdots\!07}{12\!\cdots\!00}a^{14}-\frac{29\!\cdots\!91}{31\!\cdots\!80}a^{13}+\frac{45\!\cdots\!51}{10\!\cdots\!00}a^{12}-\frac{20\!\cdots\!43}{15\!\cdots\!40}a^{11}+\frac{32\!\cdots\!17}{12\!\cdots\!00}a^{10}-\frac{77\!\cdots\!17}{19\!\cdots\!00}a^{9}+\frac{25\!\cdots\!41}{48\!\cdots\!20}a^{8}-\frac{26\!\cdots\!27}{37\!\cdots\!40}a^{7}+\frac{33\!\cdots\!41}{41\!\cdots\!00}a^{6}-\frac{95\!\cdots\!49}{12\!\cdots\!00}a^{5}+\frac{83\!\cdots\!03}{10\!\cdots\!00}a^{4}-\frac{11\!\cdots\!93}{15\!\cdots\!00}a^{3}+\frac{14\!\cdots\!37}{30\!\cdots\!00}a^{2}-\frac{65\!\cdots\!57}{37\!\cdots\!00}a+\frac{47\!\cdots\!91}{75\!\cdots\!00}$, $\frac{11\!\cdots\!91}{13\!\cdots\!40}a^{26}-\frac{61\!\cdots\!57}{67\!\cdots\!00}a^{25}+\frac{33\!\cdots\!89}{67\!\cdots\!00}a^{24}+\frac{22\!\cdots\!59}{67\!\cdots\!00}a^{23}-\frac{98\!\cdots\!59}{67\!\cdots\!00}a^{22}-\frac{85\!\cdots\!81}{67\!\cdots\!00}a^{21}+\frac{18\!\cdots\!03}{67\!\cdots\!00}a^{20}-\frac{13\!\cdots\!71}{13\!\cdots\!40}a^{19}+\frac{16\!\cdots\!79}{67\!\cdots\!00}a^{18}-\frac{48\!\cdots\!91}{67\!\cdots\!00}a^{17}+\frac{48\!\cdots\!97}{21\!\cdots\!00}a^{16}-\frac{30\!\cdots\!19}{67\!\cdots\!00}a^{15}+\frac{83\!\cdots\!67}{15\!\cdots\!40}a^{14}-\frac{20\!\cdots\!87}{24\!\cdots\!00}a^{13}+\frac{98\!\cdots\!71}{27\!\cdots\!00}a^{12}-\frac{13\!\cdots\!71}{10\!\cdots\!00}a^{11}+\frac{29\!\cdots\!07}{10\!\cdots\!00}a^{10}-\frac{15\!\cdots\!29}{32\!\cdots\!00}a^{9}+\frac{33\!\cdots\!91}{52\!\cdots\!40}a^{8}-\frac{21\!\cdots\!67}{26\!\cdots\!20}a^{7}+\frac{56\!\cdots\!23}{56\!\cdots\!80}a^{6}-\frac{85\!\cdots\!31}{82\!\cdots\!00}a^{5}+\frac{28\!\cdots\!07}{28\!\cdots\!00}a^{4}-\frac{16\!\cdots\!81}{16\!\cdots\!00}a^{3}+\frac{62\!\cdots\!97}{82\!\cdots\!00}a^{2}-\frac{68\!\cdots\!89}{20\!\cdots\!00}a+\frac{76\!\cdots\!67}{20\!\cdots\!00}$, $\frac{55\!\cdots\!97}{12\!\cdots\!00}a^{26}-\frac{50\!\cdots\!27}{12\!\cdots\!00}a^{25}-\frac{61\!\cdots\!73}{12\!\cdots\!00}a^{24}+\frac{96\!\cdots\!59}{57\!\cdots\!80}a^{23}-\frac{11\!\cdots\!81}{24\!\cdots\!40}a^{22}-\frac{19\!\cdots\!67}{12\!\cdots\!00}a^{21}+\frac{14\!\cdots\!97}{12\!\cdots\!00}a^{20}-\frac{38\!\cdots\!09}{12\!\cdots\!00}a^{19}+\frac{90\!\cdots\!97}{12\!\cdots\!00}a^{18}-\frac{32\!\cdots\!01}{12\!\cdots\!00}a^{17}+\frac{29\!\cdots\!27}{40\!\cdots\!00}a^{16}-\frac{13\!\cdots\!01}{12\!\cdots\!00}a^{15}+\frac{63\!\cdots\!57}{62\!\cdots\!00}a^{14}-\frac{48\!\cdots\!23}{15\!\cdots\!00}a^{13}+\frac{14\!\cdots\!29}{10\!\cdots\!00}a^{12}-\frac{15\!\cdots\!17}{38\!\cdots\!00}a^{11}+\frac{76\!\cdots\!43}{97\!\cdots\!00}a^{10}-\frac{11\!\cdots\!71}{97\!\cdots\!00}a^{9}+\frac{18\!\cdots\!67}{12\!\cdots\!80}a^{8}-\frac{24\!\cdots\!73}{12\!\cdots\!80}a^{7}+\frac{18\!\cdots\!19}{83\!\cdots\!00}a^{6}-\frac{13\!\cdots\!33}{60\!\cdots\!00}a^{5}+\frac{48\!\cdots\!33}{20\!\cdots\!60}a^{4}-\frac{62\!\cdots\!13}{30\!\cdots\!00}a^{3}+\frac{19\!\cdots\!19}{15\!\cdots\!00}a^{2}-\frac{17\!\cdots\!53}{37\!\cdots\!00}a+\frac{12\!\cdots\!91}{75\!\cdots\!00}$, $\frac{69\!\cdots\!83}{17\!\cdots\!00}a^{26}-\frac{54\!\cdots\!91}{17\!\cdots\!00}a^{25}-\frac{12\!\cdots\!41}{17\!\cdots\!00}a^{24}+\frac{23\!\cdots\!41}{17\!\cdots\!00}a^{23}-\frac{48\!\cdots\!61}{17\!\cdots\!00}a^{22}-\frac{25\!\cdots\!07}{17\!\cdots\!00}a^{21}+\frac{30\!\cdots\!17}{34\!\cdots\!40}a^{20}-\frac{36\!\cdots\!01}{17\!\cdots\!00}a^{19}+\frac{90\!\cdots\!89}{17\!\cdots\!00}a^{18}-\frac{33\!\cdots\!53}{17\!\cdots\!00}a^{17}+\frac{27\!\cdots\!71}{55\!\cdots\!00}a^{16}-\frac{46\!\cdots\!85}{68\!\cdots\!48}a^{15}+\frac{14\!\cdots\!47}{21\!\cdots\!00}a^{14}-\frac{26\!\cdots\!07}{10\!\cdots\!00}a^{13}+\frac{72\!\cdots\!77}{69\!\cdots\!00}a^{12}-\frac{18\!\cdots\!27}{67\!\cdots\!00}a^{11}+\frac{70\!\cdots\!31}{13\!\cdots\!00}a^{10}-\frac{40\!\cdots\!81}{53\!\cdots\!16}a^{9}+\frac{17\!\cdots\!49}{16\!\cdots\!80}a^{8}-\frac{10\!\cdots\!67}{83\!\cdots\!40}a^{7}+\frac{23\!\cdots\!27}{16\!\cdots\!00}a^{6}-\frac{60\!\cdots\!99}{41\!\cdots\!00}a^{5}+\frac{61\!\cdots\!69}{41\!\cdots\!00}a^{4}-\frac{52\!\cdots\!01}{41\!\cdots\!00}a^{3}+\frac{38\!\cdots\!41}{52\!\cdots\!00}a^{2}-\frac{71\!\cdots\!69}{26\!\cdots\!00}a+\frac{90\!\cdots\!67}{10\!\cdots\!80}$, $\frac{71\!\cdots\!77}{49\!\cdots\!00}a^{26}-\frac{85\!\cdots\!93}{49\!\cdots\!00}a^{25}+\frac{11\!\cdots\!69}{49\!\cdots\!00}a^{24}+\frac{28\!\cdots\!07}{49\!\cdots\!00}a^{23}-\frac{15\!\cdots\!07}{49\!\cdots\!00}a^{22}-\frac{26\!\cdots\!49}{19\!\cdots\!92}a^{21}+\frac{27\!\cdots\!11}{49\!\cdots\!00}a^{20}-\frac{11\!\cdots\!79}{49\!\cdots\!00}a^{19}+\frac{26\!\cdots\!59}{49\!\cdots\!00}a^{18}-\frac{67\!\cdots\!39}{49\!\cdots\!00}a^{17}+\frac{69\!\cdots\!73}{16\!\cdots\!00}a^{16}-\frac{48\!\cdots\!63}{49\!\cdots\!00}a^{15}+\frac{68\!\cdots\!43}{62\!\cdots\!00}a^{14}-\frac{27\!\cdots\!31}{31\!\cdots\!00}a^{13}+\frac{45\!\cdots\!69}{80\!\cdots\!04}a^{12}-\frac{12\!\cdots\!69}{48\!\cdots\!00}a^{11}+\frac{62\!\cdots\!79}{97\!\cdots\!00}a^{10}-\frac{37\!\cdots\!93}{38\!\cdots\!00}a^{9}+\frac{96\!\cdots\!75}{97\!\cdots\!04}a^{8}-\frac{86\!\cdots\!33}{97\!\cdots\!40}a^{7}+\frac{19\!\cdots\!57}{16\!\cdots\!00}a^{6}-\frac{37\!\cdots\!01}{24\!\cdots\!60}a^{5}+\frac{54\!\cdots\!77}{41\!\cdots\!00}a^{4}-\frac{58\!\cdots\!11}{12\!\cdots\!00}a^{3}-\frac{14\!\cdots\!63}{30\!\cdots\!20}a^{2}+\frac{15\!\cdots\!73}{18\!\cdots\!20}a-\frac{26\!\cdots\!81}{15\!\cdots\!00}$, $\frac{13\!\cdots\!57}{99\!\cdots\!60}a^{26}-\frac{15\!\cdots\!77}{99\!\cdots\!60}a^{25}+\frac{97\!\cdots\!33}{99\!\cdots\!60}a^{24}+\frac{10\!\cdots\!75}{19\!\cdots\!92}a^{23}-\frac{24\!\cdots\!19}{99\!\cdots\!60}a^{22}-\frac{20\!\cdots\!97}{99\!\cdots\!60}a^{21}+\frac{46\!\cdots\!47}{99\!\cdots\!60}a^{20}-\frac{33\!\cdots\!91}{19\!\cdots\!92}a^{19}+\frac{39\!\cdots\!51}{99\!\cdots\!60}a^{18}-\frac{27\!\cdots\!09}{23\!\cdots\!20}a^{17}+\frac{11\!\cdots\!17}{32\!\cdots\!60}a^{16}-\frac{14\!\cdots\!31}{19\!\cdots\!92}a^{15}+\frac{10\!\cdots\!27}{12\!\cdots\!20}a^{14}-\frac{16\!\cdots\!29}{12\!\cdots\!20}a^{13}+\frac{24\!\cdots\!79}{40\!\cdots\!20}a^{12}-\frac{64\!\cdots\!71}{31\!\cdots\!28}a^{11}+\frac{22\!\cdots\!67}{48\!\cdots\!20}a^{10}-\frac{59\!\cdots\!59}{77\!\cdots\!20}a^{9}+\frac{19\!\cdots\!81}{19\!\cdots\!80}a^{8}-\frac{63\!\cdots\!39}{48\!\cdots\!52}a^{7}+\frac{52\!\cdots\!41}{33\!\cdots\!60}a^{6}-\frac{19\!\cdots\!01}{12\!\cdots\!80}a^{5}+\frac{12\!\cdots\!13}{83\!\cdots\!40}a^{4}-\frac{72\!\cdots\!03}{48\!\cdots\!52}a^{3}+\frac{85\!\cdots\!47}{75\!\cdots\!80}a^{2}-\frac{24\!\cdots\!07}{60\!\cdots\!44}a-\frac{65\!\cdots\!87}{30\!\cdots\!20}$, $\frac{12\!\cdots\!59}{24\!\cdots\!00}a^{26}-\frac{19\!\cdots\!73}{49\!\cdots\!80}a^{25}-\frac{25\!\cdots\!39}{24\!\cdots\!00}a^{24}+\frac{41\!\cdots\!27}{24\!\cdots\!00}a^{23}-\frac{78\!\cdots\!87}{24\!\cdots\!00}a^{22}-\frac{45\!\cdots\!17}{24\!\cdots\!00}a^{21}+\frac{25\!\cdots\!83}{24\!\cdots\!00}a^{20}-\frac{63\!\cdots\!03}{24\!\cdots\!00}a^{19}+\frac{38\!\cdots\!57}{57\!\cdots\!00}a^{18}-\frac{11\!\cdots\!87}{49\!\cdots\!80}a^{17}+\frac{95\!\cdots\!41}{16\!\cdots\!80}a^{16}-\frac{20\!\cdots\!19}{24\!\cdots\!00}a^{15}+\frac{11\!\cdots\!29}{12\!\cdots\!00}a^{14}-\frac{75\!\cdots\!97}{24\!\cdots\!24}a^{13}+\frac{63\!\cdots\!21}{50\!\cdots\!00}a^{12}-\frac{33\!\cdots\!47}{97\!\cdots\!40}a^{11}+\frac{12\!\cdots\!29}{19\!\cdots\!00}a^{10}-\frac{18\!\cdots\!39}{19\!\cdots\!00}a^{9}+\frac{24\!\cdots\!57}{19\!\cdots\!80}a^{8}-\frac{31\!\cdots\!25}{19\!\cdots\!08}a^{7}+\frac{75\!\cdots\!47}{41\!\cdots\!00}a^{6}-\frac{10\!\cdots\!89}{60\!\cdots\!00}a^{5}+\frac{37\!\cdots\!67}{20\!\cdots\!00}a^{4}-\frac{97\!\cdots\!79}{60\!\cdots\!00}a^{3}+\frac{29\!\cdots\!09}{30\!\cdots\!00}a^{2}-\frac{54\!\cdots\!41}{15\!\cdots\!00}a+\frac{45\!\cdots\!71}{37\!\cdots\!00}$, $\frac{10\!\cdots\!41}{85\!\cdots\!00}a^{26}-\frac{21\!\cdots\!89}{17\!\cdots\!20}a^{25}-\frac{12\!\cdots\!77}{19\!\cdots\!00}a^{24}+\frac{43\!\cdots\!63}{85\!\cdots\!00}a^{23}-\frac{14\!\cdots\!83}{85\!\cdots\!00}a^{22}-\frac{33\!\cdots\!93}{85\!\cdots\!00}a^{21}+\frac{33\!\cdots\!47}{85\!\cdots\!00}a^{20}-\frac{94\!\cdots\!67}{85\!\cdots\!00}a^{19}+\frac{20\!\cdots\!19}{85\!\cdots\!00}a^{18}-\frac{14\!\cdots\!19}{17\!\cdots\!20}a^{17}+\frac{32\!\cdots\!11}{12\!\cdots\!40}a^{16}-\frac{34\!\cdots\!51}{85\!\cdots\!00}a^{15}+\frac{73\!\cdots\!83}{21\!\cdots\!00}a^{14}-\frac{38\!\cdots\!37}{42\!\cdots\!28}a^{13}+\frac{80\!\cdots\!79}{17\!\cdots\!00}a^{12}-\frac{46\!\cdots\!29}{33\!\cdots\!60}a^{11}+\frac{36\!\cdots\!47}{13\!\cdots\!00}a^{10}-\frac{85\!\cdots\!73}{20\!\cdots\!00}a^{9}+\frac{17\!\cdots\!63}{33\!\cdots\!60}a^{8}-\frac{46\!\cdots\!29}{67\!\cdots\!52}a^{7}+\frac{66\!\cdots\!69}{83\!\cdots\!00}a^{6}-\frac{15\!\cdots\!41}{20\!\cdots\!00}a^{5}+\frac{82\!\cdots\!91}{10\!\cdots\!00}a^{4}-\frac{15\!\cdots\!21}{20\!\cdots\!00}a^{3}+\frac{20\!\cdots\!23}{52\!\cdots\!00}a^{2}-\frac{21\!\cdots\!21}{13\!\cdots\!00}a+\frac{27\!\cdots\!87}{65\!\cdots\!00}$, $\frac{41\!\cdots\!09}{49\!\cdots\!00}a^{26}-\frac{38\!\cdots\!37}{49\!\cdots\!00}a^{25}-\frac{79\!\cdots\!59}{99\!\cdots\!60}a^{24}+\frac{16\!\cdots\!31}{49\!\cdots\!00}a^{23}-\frac{46\!\cdots\!11}{49\!\cdots\!00}a^{22}-\frac{15\!\cdots\!53}{49\!\cdots\!00}a^{21}+\frac{11\!\cdots\!91}{49\!\cdots\!00}a^{20}-\frac{29\!\cdots\!83}{49\!\cdots\!00}a^{19}+\frac{12\!\cdots\!83}{99\!\cdots\!60}a^{18}-\frac{23\!\cdots\!91}{49\!\cdots\!00}a^{17}+\frac{22\!\cdots\!17}{16\!\cdots\!00}a^{16}-\frac{22\!\cdots\!21}{11\!\cdots\!00}a^{15}+\frac{81\!\cdots\!31}{62\!\cdots\!00}a^{14}-\frac{83\!\cdots\!47}{15\!\cdots\!00}a^{13}+\frac{55\!\cdots\!43}{20\!\cdots\!00}a^{12}-\frac{59\!\cdots\!41}{77\!\cdots\!00}a^{11}+\frac{27\!\cdots\!21}{19\!\cdots\!80}a^{10}-\frac{76\!\cdots\!23}{38\!\cdots\!00}a^{9}+\frac{48\!\cdots\!67}{19\!\cdots\!80}a^{8}-\frac{32\!\cdots\!83}{97\!\cdots\!40}a^{7}+\frac{59\!\cdots\!89}{16\!\cdots\!00}a^{6}-\frac{48\!\cdots\!47}{15\!\cdots\!00}a^{5}+\frac{15\!\cdots\!61}{41\!\cdots\!00}a^{4}-\frac{74\!\cdots\!07}{24\!\cdots\!60}a^{3}+\frac{87\!\cdots\!67}{75\!\cdots\!00}a^{2}-\frac{42\!\cdots\!31}{75\!\cdots\!00}a+\frac{40\!\cdots\!89}{15\!\cdots\!00}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 5470716283346407.0 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{13}\cdot 5470716283346407.0 \cdot 6}{2\cdot\sqrt{929766412363569678535445062868135961189021577764947}}\cr\approx \mathstrut & 25.6062985545585 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^27 - 11*x^26 + 7*x^25 + 393*x^24 - 1777*x^23 - 1339*x^22 + 33149*x^21 - 122161*x^20 + 301221*x^19 - 901165*x^18 + 2771309*x^17 - 5696089*x^16 + 7240134*x^15 - 11573472*x^14 + 45471960*x^13 - 153604016*x^12 + 357338624*x^11 - 615897728*x^10 + 876134656*x^9 - 1154442240*x^8 + 1414654976*x^7 - 1520924672*x^6 + 1526870016*x^5 - 1494863872*x^4 + 1216438272*x^3 - 684785664*x^2 + 248741888*x - 73596928)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^27 - 11*x^26 + 7*x^25 + 393*x^24 - 1777*x^23 - 1339*x^22 + 33149*x^21 - 122161*x^20 + 301221*x^19 - 901165*x^18 + 2771309*x^17 - 5696089*x^16 + 7240134*x^15 - 11573472*x^14 + 45471960*x^13 - 153604016*x^12 + 357338624*x^11 - 615897728*x^10 + 876134656*x^9 - 1154442240*x^8 + 1414654976*x^7 - 1520924672*x^6 + 1526870016*x^5 - 1494863872*x^4 + 1216438272*x^3 - 684785664*x^2 + 248741888*x - 73596928, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^27 - 11*x^26 + 7*x^25 + 393*x^24 - 1777*x^23 - 1339*x^22 + 33149*x^21 - 122161*x^20 + 301221*x^19 - 901165*x^18 + 2771309*x^17 - 5696089*x^16 + 7240134*x^15 - 11573472*x^14 + 45471960*x^13 - 153604016*x^12 + 357338624*x^11 - 615897728*x^10 + 876134656*x^9 - 1154442240*x^8 + 1414654976*x^7 - 1520924672*x^6 + 1526870016*x^5 - 1494863872*x^4 + 1216438272*x^3 - 684785664*x^2 + 248741888*x - 73596928);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 11*x^26 + 7*x^25 + 393*x^24 - 1777*x^23 - 1339*x^22 + 33149*x^21 - 122161*x^20 + 301221*x^19 - 901165*x^18 + 2771309*x^17 - 5696089*x^16 + 7240134*x^15 - 11573472*x^14 + 45471960*x^13 - 153604016*x^12 + 357338624*x^11 - 615897728*x^10 + 876134656*x^9 - 1154442240*x^8 + 1414654976*x^7 - 1520924672*x^6 + 1526870016*x^5 - 1494863872*x^4 + 1216438272*x^3 - 684785664*x^2 + 248741888*x - 73596928);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{27}$ (as 27T8):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 54
The 15 conjugacy class representatives for $D_{27}$
Character table for $D_{27}$

Intermediate fields

3.1.563.1, 9.1.100469346961.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.2.0.1}{2} }^{13}{,}\,{\href{/padicField/2.1.0.1}{1} }$ $27$ ${\href{/padicField/5.2.0.1}{2} }^{13}{,}\,{\href{/padicField/5.1.0.1}{1} }$ R ${\href{/padicField/11.9.0.1}{9} }^{3}$ ${\href{/padicField/13.9.0.1}{9} }^{3}$ $27$ $27$ $27$ ${\href{/padicField/29.2.0.1}{2} }^{13}{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.2.0.1}{2} }^{13}{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.2.0.1}{2} }^{13}{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.2.0.1}{2} }^{13}{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.2.0.1}{2} }^{13}{,}\,{\href{/padicField/43.1.0.1}{1} }$ $27$ ${\href{/padicField/53.2.0.1}{2} }^{13}{,}\,{\href{/padicField/53.1.0.1}{1} }$ $27$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(7\) Copy content Toggle raw display Deg $27$$3$$9$$18$
\(563\) Copy content Toggle raw display $\Q_{563}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.563.2t1.a.a$1$ $ 563 $ \(\Q(\sqrt{-563}) \) $C_2$ (as 2T1) $1$ $-1$
* 2.563.3t2.a.a$2$ $ 563 $ 3.1.563.1 $S_3$ (as 3T2) $1$ $0$
* 2.563.9t3.a.b$2$ $ 563 $ 9.1.100469346961.1 $D_{9}$ (as 9T3) $1$ $0$
* 2.563.9t3.a.c$2$ $ 563 $ 9.1.100469346961.1 $D_{9}$ (as 9T3) $1$ $0$
* 2.563.9t3.a.a$2$ $ 563 $ 9.1.100469346961.1 $D_{9}$ (as 9T3) $1$ $0$
* 2.27587.27t8.a.f$2$ $ 7^{2} \cdot 563 $ 27.1.929766412363569678535445062868135961189021577764947.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.27587.27t8.a.d$2$ $ 7^{2} \cdot 563 $ 27.1.929766412363569678535445062868135961189021577764947.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.27587.27t8.a.c$2$ $ 7^{2} \cdot 563 $ 27.1.929766412363569678535445062868135961189021577764947.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.27587.27t8.a.a$2$ $ 7^{2} \cdot 563 $ 27.1.929766412363569678535445062868135961189021577764947.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.27587.27t8.a.b$2$ $ 7^{2} \cdot 563 $ 27.1.929766412363569678535445062868135961189021577764947.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.27587.27t8.a.e$2$ $ 7^{2} \cdot 563 $ 27.1.929766412363569678535445062868135961189021577764947.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.27587.27t8.a.i$2$ $ 7^{2} \cdot 563 $ 27.1.929766412363569678535445062868135961189021577764947.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.27587.27t8.a.h$2$ $ 7^{2} \cdot 563 $ 27.1.929766412363569678535445062868135961189021577764947.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.27587.27t8.a.g$2$ $ 7^{2} \cdot 563 $ 27.1.929766412363569678535445062868135961189021577764947.1 $D_{27}$ (as 27T8) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.