# SageMath code for working with number field 27.1.78637606867438430727852801672920631138199.1 # (Note that not all these functions may be available, and some may take a long time to execute.) # Define the number field: x = polygen(QQ); K. = NumberField(x^27 - x^26 + 6*x^25 - 31*x^24 + 97*x^23 - 269*x^22 + 599*x^21 - 994*x^20 + 1307*x^19 - 1298*x^18 + 592*x^17 + 817*x^16 - 2461*x^15 + 4001*x^14 - 4903*x^13 + 4315*x^12 - 2279*x^11 - 512*x^10 + 3872*x^9 - 6814*x^8 + 7826*x^7 - 7115*x^6 + 5689*x^5 - 3842*x^4 + 1951*x^3 - 627*x^2 + 101*x - 1) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Galois group: K.galois_group(type='pari') # Frobenius cycle types: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]