Properties

Label 27.1.66075691094...5963.1
Degree $27$
Signature $[1, 13]$
Discriminant $-\,3^{27}\cdot 7\cdot 139\cdot 373\cdot 857\cdot 14813\cdot 4501099\cdot 23278727\cdot 179491764750951217$
Root discriminant $127.19$
Ramified primes $3, 7, 139, 373, 857, 14813, 4501099, 23278727, 179491764750951217$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $S_{27}$ (as 27T2392)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-5, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^27 - 3*x - 5)
 
gp: K = bnfinit(x^27 - 3*x - 5, 1)
 

Normalized defining polynomial

\( x^{27} - 3 x - 5 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $27$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[1, 13]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-660756910949039852309163136206345937175666915026128585963=-\,3^{27}\cdot 7\cdot 139\cdot 373\cdot 857\cdot 14813\cdot 4501099\cdot 23278727\cdot 179491764750951217\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $127.19$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 7, 139, 373, 857, 14813, 4501099, 23278727, 179491764750951217$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 680758079489720300 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_{27}$ (as 27T2392):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 10888869450418352160768000000
The 3010 conjugacy class representatives for $S_{27}$ are not computed
Character table for $S_{27}$ is not computed

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $23{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }$ R ${\href{/LocalNumberField/5.4.0.1}{4} }^{6}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ R $25{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ $21{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ $17{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.13.0.1}{13} }{,}\,{\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ $16{,}\,{\href{/LocalNumberField/29.11.0.1}{11} }$ ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ $17{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ $17{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ $22{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ $18{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ $16{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.7.0.1}{7} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
$7$$\Q_{7}$$x + 2$$1$$1$$0$Trivial$[\ ]$
7.2.1.2$x^{2} + 14$$2$$1$$1$$C_2$$[\ ]_{2}$
7.5.0.1$x^{5} - x + 4$$1$$5$$0$$C_5$$[\ ]^{5}$
7.7.0.1$x^{7} - x + 2$$1$$7$$0$$C_7$$[\ ]^{7}$
7.12.0.1$x^{12} + 3 x^{2} - 2 x + 3$$1$$12$$0$$C_{12}$$[\ ]^{12}$
$139$139.2.1.1$x^{2} - 139$$2$$1$$1$$C_2$$[\ ]_{2}$
139.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
139.10.0.1$x^{10} - x + 104$$1$$10$$0$$C_{10}$$[\ ]^{10}$
139.11.0.1$x^{11} - x + 24$$1$$11$$0$$C_{11}$$[\ ]^{11}$
373Data not computed
857Data not computed
14813Data not computed
4501099Data not computed
23278727Data not computed
179491764750951217Data not computed