Normalized defining polynomial
\( x^{27} - 6 x^{26} + 27 x^{25} - 119 x^{24} + 469 x^{23} - 1488 x^{22} + 4228 x^{21} - 11600 x^{20} + 26558 x^{19} - 54959 x^{18} + 133324 x^{17} - 272188 x^{16} + 522791 x^{15} - 983894 x^{14} + 1639478 x^{13} - 2435791 x^{12} + 3557436 x^{11} - 4633264 x^{10} + 5404652 x^{9} - 6079977 x^{8} + 6195381 x^{7} - 5327698 x^{6} + 4651935 x^{5} - 3835566 x^{4} + 2476602 x^{3} - 1723599 x^{2} + 1364445 x - 459999 \)
Invariants
Degree: | $27$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[1, 13]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-55686266560375612156826962909758952173810975943\)\(\medspace = -\,3943^{13}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $53.87$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $3943$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{5}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{6}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{7}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{8}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{16} + \frac{1}{9} a^{15} + \frac{1}{9} a^{14} + \frac{1}{9} a^{13} + \frac{1}{9} a^{12} + \frac{1}{9} a^{11} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{4}{9} a^{8} - \frac{4}{9} a^{7} - \frac{4}{9} a^{6} - \frac{4}{9} a^{5} - \frac{4}{9} a^{4} - \frac{4}{9} a^{3} - \frac{4}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{45} a^{18} + \frac{1}{45} a^{17} - \frac{2}{45} a^{16} - \frac{1}{9} a^{15} + \frac{4}{45} a^{14} - \frac{2}{45} a^{13} - \frac{1}{9} a^{12} - \frac{2}{45} a^{11} + \frac{2}{45} a^{10} - \frac{4}{45} a^{9} - \frac{1}{45} a^{8} + \frac{2}{45} a^{7} - \frac{16}{45} a^{6} - \frac{2}{9} a^{5} - \frac{16}{45} a^{4} + \frac{8}{45} a^{3} + \frac{7}{15} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{45} a^{19} + \frac{2}{45} a^{17} + \frac{2}{45} a^{16} - \frac{1}{45} a^{15} - \frac{1}{45} a^{14} + \frac{2}{45} a^{13} - \frac{7}{45} a^{12} - \frac{2}{15} a^{11} - \frac{1}{45} a^{10} - \frac{2}{45} a^{9} - \frac{17}{45} a^{8} + \frac{22}{45} a^{7} - \frac{14}{45} a^{6} + \frac{19}{45} a^{5} + \frac{19}{45} a^{4} + \frac{8}{45} a^{3} + \frac{13}{45} a^{2} - \frac{1}{3} a - \frac{1}{5}$, $\frac{1}{45} a^{20} + \frac{1}{15} a^{16} - \frac{2}{15} a^{15} - \frac{2}{15} a^{14} - \frac{1}{15} a^{13} + \frac{4}{45} a^{12} + \frac{1}{15} a^{11} - \frac{2}{15} a^{10} + \frac{2}{15} a^{9} - \frac{7}{15} a^{8} - \frac{1}{15} a^{7} + \frac{2}{15} a^{6} - \frac{2}{15} a^{5} - \frac{1}{9} a^{4} - \frac{1}{15} a^{3} - \frac{4}{15} a^{2} + \frac{1}{15} a - \frac{2}{5}$, $\frac{1}{405} a^{21} + \frac{2}{405} a^{20} + \frac{1}{135} a^{19} + \frac{1}{405} a^{18} + \frac{2}{81} a^{17} + \frac{49}{405} a^{16} - \frac{41}{405} a^{15} - \frac{29}{405} a^{14} - \frac{28}{405} a^{13} + \frac{8}{81} a^{11} - \frac{7}{405} a^{10} - \frac{4}{405} a^{9} + \frac{128}{405} a^{8} - \frac{187}{405} a^{7} + \frac{8}{405} a^{6} - \frac{8}{27} a^{5} - \frac{167}{405} a^{4} - \frac{46}{405} a^{3} + \frac{58}{135} a^{2} - \frac{22}{45} a - \frac{2}{15}$, $\frac{1}{1215} a^{22} - \frac{1}{1215} a^{21} - \frac{1}{405} a^{20} + \frac{2}{243} a^{19} - \frac{2}{1215} a^{18} - \frac{44}{1215} a^{17} - \frac{89}{1215} a^{16} + \frac{31}{1215} a^{15} - \frac{17}{243} a^{14} - \frac{29}{405} a^{13} + \frac{4}{1215} a^{12} - \frac{172}{1215} a^{11} + \frac{26}{1215} a^{10} - \frac{35}{243} a^{9} - \frac{238}{1215} a^{8} + \frac{92}{1215} a^{7} + \frac{19}{45} a^{6} - \frac{19}{243} a^{5} - \frac{49}{1215} a^{4} - \frac{202}{405} a^{3} - \frac{1}{27} a^{2} + \frac{17}{45} a - \frac{1}{15}$, $\frac{1}{1215} a^{23} - \frac{1}{1215} a^{21} + \frac{13}{1215} a^{20} - \frac{2}{243} a^{19} + \frac{11}{1215} a^{18} + \frac{32}{1215} a^{17} + \frac{62}{1215} a^{16} + \frac{8}{81} a^{15} + \frac{119}{1215} a^{14} - \frac{194}{1215} a^{13} - \frac{38}{405} a^{12} + \frac{163}{1215} a^{11} + \frac{20}{243} a^{10} + \frac{88}{1215} a^{9} + \frac{103}{1215} a^{8} - \frac{172}{1215} a^{7} - \frac{584}{1215} a^{6} + \frac{37}{135} a^{5} + \frac{572}{1215} a^{4} + \frac{34}{405} a^{3} - \frac{4}{135} a^{2} - \frac{4}{9} a + \frac{2}{5}$, $\frac{1}{8505} a^{24} - \frac{1}{2835} a^{23} + \frac{1}{2835} a^{22} + \frac{1}{2835} a^{21} - \frac{79}{8505} a^{20} - \frac{2}{315} a^{19} + \frac{1}{945} a^{18} - \frac{4}{405} a^{17} - \frac{1133}{8505} a^{16} - \frac{22}{189} a^{15} - \frac{46}{945} a^{14} - \frac{101}{2835} a^{13} - \frac{73}{8505} a^{12} + \frac{37}{405} a^{11} - \frac{122}{945} a^{10} + \frac{166}{2835} a^{9} + \frac{4084}{8505} a^{8} - \frac{74}{405} a^{7} + \frac{262}{567} a^{6} + \frac{262}{2835} a^{5} - \frac{1576}{8505} a^{4} - \frac{65}{567} a^{3} - \frac{40}{189} a^{2} + \frac{41}{315} a - \frac{1}{105}$, $\frac{1}{42525} a^{25} + \frac{1}{42525} a^{24} - \frac{1}{4725} a^{23} + \frac{1}{2835} a^{22} - \frac{4}{42525} a^{21} + \frac{134}{42525} a^{20} - \frac{23}{4725} a^{19} + \frac{68}{14175} a^{18} + \frac{1807}{42525} a^{17} - \frac{2057}{42525} a^{16} - \frac{479}{4725} a^{15} + \frac{2077}{14175} a^{14} + \frac{6401}{42525} a^{13} - \frac{1226}{8505} a^{12} - \frac{328}{2835} a^{11} + \frac{823}{14175} a^{10} - \frac{923}{6075} a^{9} - \frac{7583}{42525} a^{8} + \frac{662}{1575} a^{7} + \frac{8}{45} a^{6} + \frac{1277}{6075} a^{5} + \frac{1543}{8505} a^{4} - \frac{2299}{14175} a^{3} + \frac{41}{945} a^{2} + \frac{47}{225} a - \frac{193}{525}$, $\frac{1}{54298063263936663485108128599183295476574410757011476874973562048025} a^{26} - \frac{2962795100805491297669990813522779101621948615353360686757303}{18099354421312221161702709533061098492191470252337158958324520682675} a^{25} - \frac{24799428491018709633512133723128532761441840047598700857301011}{548465285494309732172809379789730257339135462192035119949227899475} a^{24} + \frac{1728439762641385520734286513266405861559419066097852017369164776}{10859612652787332697021625719836659095314882151402295374994712409605} a^{23} - \frac{3604749594881353268029188718262791104991217494294457667485127149}{54298063263936663485108128599183295476574410757011476874973562048025} a^{22} - \frac{5330588179139908614177751533372448291618209961214012468641996844}{6033118140437407053900903177687032830730490084112386319441506894225} a^{21} - \frac{427474615511288571801712193302003107111127766075737356005534829017}{54298063263936663485108128599183295476574410757011476874973562048025} a^{20} + \frac{68833009340056352159807292446292598397493986631300290796643298974}{54298063263936663485108128599183295476574410757011476874973562048025} a^{19} + \frac{378994337871410049133238820485651061992615994545140193811119984057}{54298063263936663485108128599183295476574410757011476874973562048025} a^{18} + \frac{1602304115483759494869782686561415090940028784195640428430434525308}{54298063263936663485108128599183295476574410757011476874973562048025} a^{17} + \frac{2198740486729600573499778731246587274079876729994925124482318755789}{54298063263936663485108128599183295476574410757011476874973562048025} a^{16} + \frac{7966958895521919745366301170568883951942121994939966335324334168366}{54298063263936663485108128599183295476574410757011476874973562048025} a^{15} - \frac{462724303832488918923042620699905105783913131939879620872733224062}{7756866180562380497872589799883327925224915822430210982139080292575} a^{14} + \frac{78659319964086797579155839576191174749859309804669805637924239346}{987237513889757517911056883621514463210443831945663215908610219055} a^{13} - \frac{1500523273459881573000017063080721872079329038343913729334490946243}{10859612652787332697021625719836659095314882151402295374994712409605} a^{12} + \frac{1199586790264006554654190690361748032611744248588008276753568571787}{7756866180562380497872589799883327925224915822430210982139080292575} a^{11} - \frac{89005849365305630017220646975879065458568681675477856030683639726}{670346460048600783766767019743003647858943342679154035493500766025} a^{10} + \frac{4425884696333324839482141582983462525872554445569668840960496457187}{54298063263936663485108128599183295476574410757011476874973562048025} a^{9} - \frac{715308928910599622264890806126275674846188769484902552129111396423}{7756866180562380497872589799883327925224915822430210982139080292575} a^{8} - \frac{1412308495669024807775915763807690845154862973183094333012083904478}{3619870884262444232340541906612219698438294050467431791664904136535} a^{7} + \frac{6751404893924197728615297195007226829076583264442826958648077163}{18099354421312221161702709533061098492191470252337158958324520682675} a^{6} - \frac{3190067162082803010711018930980984074499084753636094573523527223034}{10859612652787332697021625719836659095314882151402295374994712409605} a^{5} + \frac{2609845549590497244642367251272417384577947563682488239203253246967}{6033118140437407053900903177687032830730490084112386319441506894225} a^{4} + \frac{303279203687535905819925110593542816668561612631387735008648900329}{1206623628087481410780180635537406566146098016822477263888301378845} a^{3} + \frac{166321558289771348015101558711504964128364705703808369711968919849}{2011039380145802351300301059229010943576830028037462106480502298075} a^{2} - \frac{27735565426359736027549475566913972357746800831222502853672921966}{223448820016200261255589006581001215952981114226384678497833588675} a + \frac{20171560483823447022243913983013089971716377558664159242314729234}{44689764003240052251117801316200243190596222845276935699566717735}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 29482123669434.47 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 54 |
The 15 conjugacy class representatives for $D_{27}$ |
Character table for $D_{27}$ |
Intermediate fields
3.1.3943.1, 9.1.241716951468001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $27$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $27$ | $27$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{9}$ | $27$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{3}$ | $27$ | $27$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
3943 | Data not computed |