Normalized defining polynomial
\(x^{27} - 5 x^{26} + 4 x^{25} - 53 x^{24} + 12 x^{23} - 178 x^{22} + 281 x^{21} - 251 x^{20} + 1170 x^{19} - 548 x^{18} + 1924 x^{17} - 3164 x^{16} + 1182 x^{15} - 5392 x^{14} + 2732 x^{13} - 5123 x^{12} + 7843 x^{11} + 5402 x^{10} + 11272 x^{9} - 9146 x^{8} - 13685 x^{7} - 8959 x^{6} + 8451 x^{5} + 8381 x^{4} + 1087 x^{3} - 2808 x^{2} - 714 x - 59\)
Invariants
Degree: | $27$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[1, 13]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-536750065653068684465204465961269314591399079\)\(\medspace = -\,31^{13}\cdot 89^{13}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $45.36$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $31, 89$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{31} a^{15} + \frac{4}{31} a^{12} - \frac{13}{31} a^{9} - \frac{10}{31} a^{6} + \frac{9}{31} a^{3} + \frac{15}{31}$, $\frac{1}{31} a^{16} + \frac{4}{31} a^{13} - \frac{13}{31} a^{10} - \frac{10}{31} a^{7} + \frac{9}{31} a^{4} + \frac{15}{31} a$, $\frac{1}{31} a^{17} + \frac{4}{31} a^{14} - \frac{13}{31} a^{11} - \frac{10}{31} a^{8} + \frac{9}{31} a^{5} + \frac{15}{31} a^{2}$, $\frac{1}{31} a^{18} + \frac{2}{31} a^{12} + \frac{11}{31} a^{9} - \frac{13}{31} a^{6} + \frac{10}{31} a^{3} + \frac{2}{31}$, $\frac{1}{217} a^{19} - \frac{1}{217} a^{18} + \frac{3}{217} a^{17} + \frac{3}{217} a^{16} + \frac{3}{217} a^{15} + \frac{15}{31} a^{14} - \frac{79}{217} a^{13} - \frac{3}{31} a^{12} + \frac{85}{217} a^{11} - \frac{4}{31} a^{10} - \frac{19}{217} a^{9} + \frac{32}{217} a^{8} - \frac{74}{217} a^{7} + \frac{107}{217} a^{6} - \frac{66}{217} a^{5} - \frac{87}{217} a^{4} + \frac{48}{217} a^{3} + \frac{2}{31} a^{2} - \frac{11}{31} a - \frac{19}{217}$, $\frac{1}{217} a^{20} + \frac{2}{217} a^{18} - \frac{1}{217} a^{17} - \frac{1}{217} a^{16} + \frac{3}{217} a^{15} - \frac{2}{217} a^{14} + \frac{89}{217} a^{13} + \frac{78}{217} a^{12} - \frac{69}{217} a^{11} + \frac{44}{217} a^{10} + \frac{76}{217} a^{9} + \frac{4}{31} a^{8} + \frac{103}{217} a^{7} + \frac{6}{217} a^{6} + \frac{1}{217} a^{5} - \frac{102}{217} a^{4} - \frac{15}{217} a^{3} + \frac{7}{31} a^{2} + \frac{16}{217} a - \frac{75}{217}$, $\frac{1}{217} a^{21} + \frac{1}{217} a^{18} - \frac{3}{217} a^{16} - \frac{1}{217} a^{15} - \frac{3}{7} a^{14} + \frac{19}{217} a^{13} + \frac{1}{217} a^{12} - \frac{85}{217} a^{10} - \frac{25}{217} a^{9} - \frac{1}{7} a^{8} - \frac{9}{31} a^{7} - \frac{66}{217} a^{6} + \frac{3}{7} a^{5} - \frac{58}{217} a^{4} + \frac{16}{217} a^{3} + \frac{3}{7} a^{2} + \frac{79}{217} a - \frac{74}{217}$, $\frac{1}{2387} a^{22} - \frac{2}{2387} a^{21} - \frac{3}{2387} a^{20} + \frac{5}{2387} a^{19} - \frac{12}{2387} a^{18} - \frac{23}{2387} a^{17} + \frac{20}{2387} a^{16} + \frac{24}{2387} a^{15} + \frac{274}{2387} a^{14} - \frac{13}{77} a^{13} + \frac{345}{2387} a^{12} + \frac{162}{341} a^{11} - \frac{967}{2387} a^{10} - \frac{439}{2387} a^{9} - \frac{1126}{2387} a^{8} - \frac{328}{2387} a^{7} - \frac{51}{2387} a^{6} - \frac{118}{341} a^{5} - \frac{127}{2387} a^{4} - \frac{864}{2387} a^{3} - \frac{46}{217} a^{2} - \frac{115}{341} a - \frac{410}{2387}$, $\frac{1}{40579} a^{23} - \frac{4}{40579} a^{22} - \frac{87}{40579} a^{21} - \frac{1}{3689} a^{20} + \frac{4}{3689} a^{19} + \frac{342}{40579} a^{18} - \frac{16}{3689} a^{17} + \frac{160}{40579} a^{16} - \frac{632}{40579} a^{15} + \frac{9972}{40579} a^{14} - \frac{2639}{5797} a^{13} - \frac{1206}{40579} a^{12} - \frac{16358}{40579} a^{11} + \frac{10163}{40579} a^{10} - \frac{4901}{40579} a^{9} + \frac{493}{2387} a^{8} + \frac{120}{527} a^{7} + \frac{8626}{40579} a^{6} - \frac{12808}{40579} a^{5} + \frac{17320}{40579} a^{4} - \frac{5774}{40579} a^{3} - \frac{19835}{40579} a^{2} + \frac{811}{5797} a + \frac{653}{5797}$, $\frac{1}{771001} a^{24} - \frac{4}{771001} a^{23} + \frac{134}{771001} a^{22} + \frac{1604}{771001} a^{21} + \frac{316}{771001} a^{20} - \frac{797}{771001} a^{19} + \frac{9888}{771001} a^{18} + \frac{8354}{771001} a^{17} - \frac{10050}{771001} a^{16} + \frac{11910}{771001} a^{15} + \frac{184014}{771001} a^{14} - \frac{34169}{771001} a^{13} + \frac{246139}{771001} a^{12} + \frac{8951}{70091} a^{11} + \frac{35151}{771001} a^{10} + \frac{51}{133} a^{9} + \frac{374876}{771001} a^{8} - \frac{48126}{110143} a^{7} + \frac{20438}{70091} a^{6} - \frac{1601}{771001} a^{5} - \frac{3028}{24871} a^{4} - \frac{251171}{771001} a^{3} - \frac{16669}{40579} a^{2} + \frac{9634}{24871} a + \frac{18210}{45353}$, $\frac{1}{137837245777} a^{25} - \frac{86907}{137837245777} a^{24} - \frac{144255}{19691035111} a^{23} - \frac{27498974}{137837245777} a^{22} - \frac{147248501}{137837245777} a^{21} - \frac{122126111}{137837245777} a^{20} + \frac{14022163}{137837245777} a^{19} + \frac{78172981}{19691035111} a^{18} + \frac{496248595}{137837245777} a^{17} - \frac{16920363}{7254591883} a^{16} + \frac{952567821}{137837245777} a^{15} + \frac{23816274232}{137837245777} a^{14} + \frac{32333378926}{137837245777} a^{13} - \frac{603231661}{1790094101} a^{12} - \frac{34528413812}{137837245777} a^{11} - \frac{3840864464}{8108073281} a^{10} - \frac{19883354167}{137837245777} a^{9} + \frac{33935570679}{137837245777} a^{8} - \frac{49308752431}{137837245777} a^{7} - \frac{7312102130}{19691035111} a^{6} - \frac{48823855746}{137837245777} a^{5} - \frac{5829773240}{12530658707} a^{4} + \frac{50597300151}{137837245777} a^{3} + \frac{14604794346}{137837245777} a^{2} - \frac{1049494557}{12530658707} a - \frac{4065376829}{137837245777}$, $\frac{1}{1585266163681277} a^{26} - \frac{3280}{1585266163681277} a^{25} + \frac{7051370}{13321564400683} a^{24} + \frac{16866953281}{1585266163681277} a^{23} + \frac{191510935218}{1585266163681277} a^{22} + \frac{263406651070}{144115105789207} a^{21} - \frac{2534350127877}{1585266163681277} a^{20} - \frac{404390307374}{226466594811611} a^{19} - \frac{10310109893558}{1585266163681277} a^{18} - \frac{175170528437}{29910682333609} a^{17} + \frac{17965909179615}{1585266163681277} a^{16} - \frac{2658016675610}{1585266163681277} a^{15} - \frac{389160668977601}{1585266163681277} a^{14} - \frac{299290271040283}{1585266163681277} a^{13} - \frac{10434033243831}{51137618183267} a^{12} - \frac{306126668099282}{1585266163681277} a^{11} - \frac{705478879913429}{1585266163681277} a^{10} + \frac{503770391038424}{1585266163681277} a^{9} + \frac{350565412266371}{1585266163681277} a^{8} + \frac{300916872985796}{1585266163681277} a^{7} + \frac{159828196069154}{1585266163681277} a^{6} - \frac{64432160461195}{1585266163681277} a^{5} + \frac{112282182918900}{226466594811611} a^{4} - \frac{64232845972748}{1585266163681277} a^{3} - \frac{516009400955086}{1585266163681277} a^{2} + \frac{786210705043347}{1585266163681277} a - \frac{757029289669797}{1585266163681277}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 438273503820.3111 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 54 |
The 15 conjugacy class representatives for $D_{27}$ |
Character table for $D_{27}$ |
Intermediate fields
3.1.2759.1, 9.1.57943777150561.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $27$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | $27$ | $27$ | R | $27$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $27$ | $27$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
$89$ | $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |