Properties

Label 27.1.490...711.1
Degree $27$
Signature $[1, 13]$
Discriminant $-4.907\times 10^{45}$
Root discriminant \(49.23\)
Ramified prime $3271$
Class number $2$ (GRH)
Class group [2] (GRH)
Galois group $D_{27}$ (as 27T8)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^27 - 3*x^26 + 15*x^25 - 53*x^24 + 106*x^23 - 298*x^22 + 714*x^21 - 199*x^20 + 2747*x^19 + 4180*x^18 + 4767*x^17 + 27487*x^16 - 7928*x^15 + 93863*x^14 - 80586*x^13 + 257840*x^12 - 253867*x^11 + 459460*x^10 - 363114*x^9 + 981160*x^8 + 143119*x^7 - 202978*x^6 + 143097*x^5 + 629777*x^4 + 25669*x^3 - 205103*x^2 - 65505*x + 40293)
 
gp: K = bnfinit(y^27 - 3*y^26 + 15*y^25 - 53*y^24 + 106*y^23 - 298*y^22 + 714*y^21 - 199*y^20 + 2747*y^19 + 4180*y^18 + 4767*y^17 + 27487*y^16 - 7928*y^15 + 93863*y^14 - 80586*y^13 + 257840*y^12 - 253867*y^11 + 459460*y^10 - 363114*y^9 + 981160*y^8 + 143119*y^7 - 202978*y^6 + 143097*y^5 + 629777*y^4 + 25669*y^3 - 205103*y^2 - 65505*y + 40293, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^27 - 3*x^26 + 15*x^25 - 53*x^24 + 106*x^23 - 298*x^22 + 714*x^21 - 199*x^20 + 2747*x^19 + 4180*x^18 + 4767*x^17 + 27487*x^16 - 7928*x^15 + 93863*x^14 - 80586*x^13 + 257840*x^12 - 253867*x^11 + 459460*x^10 - 363114*x^9 + 981160*x^8 + 143119*x^7 - 202978*x^6 + 143097*x^5 + 629777*x^4 + 25669*x^3 - 205103*x^2 - 65505*x + 40293);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 3*x^26 + 15*x^25 - 53*x^24 + 106*x^23 - 298*x^22 + 714*x^21 - 199*x^20 + 2747*x^19 + 4180*x^18 + 4767*x^17 + 27487*x^16 - 7928*x^15 + 93863*x^14 - 80586*x^13 + 257840*x^12 - 253867*x^11 + 459460*x^10 - 363114*x^9 + 981160*x^8 + 143119*x^7 - 202978*x^6 + 143097*x^5 + 629777*x^4 + 25669*x^3 - 205103*x^2 - 65505*x + 40293)
 

\( x^{27} - 3 x^{26} + 15 x^{25} - 53 x^{24} + 106 x^{23} - 298 x^{22} + 714 x^{21} - 199 x^{20} + \cdots + 40293 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $27$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 13]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-4907350451606845763597379498834801987276076711\) \(\medspace = -\,3271^{13}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(49.23\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3271^{1/2}\approx 57.19265687131522$
Ramified primes:   \(3271\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-3271}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3}a^{9}-\frac{1}{3}a$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{2}$, $\frac{1}{3}a^{11}-\frac{1}{3}a^{3}$, $\frac{1}{3}a^{12}-\frac{1}{3}a^{4}$, $\frac{1}{3}a^{13}-\frac{1}{3}a^{5}$, $\frac{1}{3}a^{14}-\frac{1}{3}a^{6}$, $\frac{1}{9}a^{15}+\frac{1}{9}a^{14}-\frac{1}{9}a^{13}-\frac{1}{9}a^{11}-\frac{1}{9}a^{10}+\frac{1}{9}a^{9}-\frac{4}{9}a^{7}+\frac{2}{9}a^{6}+\frac{1}{9}a^{5}+\frac{1}{3}a^{4}+\frac{4}{9}a^{3}-\frac{2}{9}a^{2}-\frac{1}{9}a-\frac{1}{3}$, $\frac{1}{9}a^{16}+\frac{1}{9}a^{14}+\frac{1}{9}a^{13}-\frac{1}{9}a^{12}-\frac{1}{9}a^{10}-\frac{1}{9}a^{9}-\frac{4}{9}a^{8}-\frac{1}{3}a^{7}-\frac{4}{9}a^{6}+\frac{2}{9}a^{5}+\frac{1}{9}a^{4}+\frac{1}{3}a^{3}+\frac{4}{9}a^{2}-\frac{2}{9}a+\frac{1}{3}$, $\frac{1}{9}a^{17}+\frac{1}{9}a^{9}-\frac{1}{3}a^{8}-\frac{2}{9}a+\frac{1}{3}$, $\frac{1}{9}a^{18}+\frac{1}{9}a^{10}-\frac{2}{9}a^{2}$, $\frac{1}{9}a^{19}+\frac{1}{9}a^{11}-\frac{2}{9}a^{3}$, $\frac{1}{9}a^{20}+\frac{1}{9}a^{12}-\frac{2}{9}a^{4}$, $\frac{1}{9}a^{21}+\frac{1}{9}a^{13}-\frac{2}{9}a^{5}$, $\frac{1}{189}a^{22}+\frac{1}{27}a^{21}-\frac{2}{189}a^{20}-\frac{1}{27}a^{19}+\frac{1}{27}a^{18}-\frac{2}{63}a^{17}+\frac{1}{63}a^{16}+\frac{1}{21}a^{15}-\frac{11}{189}a^{14}-\frac{8}{189}a^{13}-\frac{23}{189}a^{12}+\frac{23}{189}a^{11}-\frac{8}{189}a^{10}-\frac{1}{63}a^{9}-\frac{16}{63}a^{8}-\frac{2}{21}a^{7}+\frac{4}{27}a^{6}-\frac{44}{189}a^{5}+\frac{79}{189}a^{4}-\frac{1}{27}a^{3}-\frac{17}{189}a^{2}+\frac{2}{7}a-\frac{1}{21}$, $\frac{1}{2079}a^{23}+\frac{4}{2079}a^{22}+\frac{61}{2079}a^{21}+\frac{62}{2079}a^{20}+\frac{13}{297}a^{19}-\frac{10}{231}a^{18}-\frac{2}{99}a^{17}-\frac{2}{99}a^{16}+\frac{67}{2079}a^{15}-\frac{164}{2079}a^{14}+\frac{64}{2079}a^{13}-\frac{118}{2079}a^{12}-\frac{4}{27}a^{11}-\frac{8}{99}a^{10}-\frac{2}{231}a^{9}-\frac{40}{99}a^{8}-\frac{23}{2079}a^{7}+\frac{124}{2079}a^{6}+\frac{127}{2079}a^{5}+\frac{37}{189}a^{4}-\frac{584}{2079}a^{3}-\frac{4}{99}a^{2}-\frac{1}{693}a-\frac{8}{21}$, $\frac{1}{193347}a^{24}+\frac{1}{193347}a^{23}+\frac{29}{27621}a^{22}+\frac{11}{651}a^{21}-\frac{2020}{193347}a^{20}-\frac{89}{17577}a^{19}-\frac{10706}{193347}a^{18}+\frac{170}{3069}a^{17}-\frac{5120}{193347}a^{16}+\frac{328}{193347}a^{15}-\frac{8992}{193347}a^{14}+\frac{4799}{64449}a^{13}+\frac{4820}{193347}a^{12}-\frac{109}{891}a^{11}-\frac{18071}{193347}a^{10}-\frac{2726}{64449}a^{9}-\frac{1873}{17577}a^{8}+\frac{59098}{193347}a^{7}-\frac{5920}{27621}a^{6}+\frac{21928}{64449}a^{5}-\frac{91972}{193347}a^{4}-\frac{95275}{193347}a^{3}+\frac{42907}{193347}a^{2}+\frac{23378}{64449}a-\frac{802}{1953}$, $\frac{1}{1008691299}a^{25}+\frac{145}{112076811}a^{24}-\frac{124136}{1008691299}a^{23}-\frac{846347}{1008691299}a^{22}-\frac{55208749}{1008691299}a^{21}+\frac{4695385}{336230433}a^{20}-\frac{1099199}{21461517}a^{19}-\frac{17751754}{1008691299}a^{18}-\frac{7124984}{1008691299}a^{17}+\frac{3418972}{336230433}a^{16}+\frac{4218328}{1008691299}a^{15}+\frac{1568753}{91699209}a^{14}+\frac{46695806}{1008691299}a^{13}+\frac{2114044}{16010973}a^{12}+\frac{57269867}{1008691299}a^{11}-\frac{23004979}{144098757}a^{10}+\frac{3747532}{27261927}a^{9}+\frac{14305892}{336230433}a^{8}+\frac{7411189}{32538429}a^{7}-\frac{223140836}{1008691299}a^{6}+\frac{199017374}{1008691299}a^{5}+\frac{30441338}{336230433}a^{4}+\frac{233127791}{1008691299}a^{3}-\frac{200521219}{1008691299}a^{2}-\frac{124807565}{336230433}a-\frac{50198}{275373}$, $\frac{1}{10\!\cdots\!21}a^{26}+\frac{10\!\cdots\!46}{10\!\cdots\!21}a^{25}+\frac{83\!\cdots\!64}{10\!\cdots\!21}a^{24}+\frac{68\!\cdots\!64}{50\!\cdots\!01}a^{23}+\frac{20\!\cdots\!88}{10\!\cdots\!21}a^{22}-\frac{32\!\cdots\!35}{10\!\cdots\!21}a^{21}-\frac{48\!\cdots\!19}{13\!\cdots\!73}a^{20}-\frac{28\!\cdots\!72}{11\!\cdots\!69}a^{19}-\frac{59\!\cdots\!96}{15\!\cdots\!03}a^{18}-\frac{15\!\cdots\!85}{10\!\cdots\!21}a^{17}-\frac{51\!\cdots\!22}{95\!\cdots\!11}a^{16}+\frac{42\!\cdots\!45}{10\!\cdots\!79}a^{15}-\frac{34\!\cdots\!05}{10\!\cdots\!21}a^{14}-\frac{12\!\cdots\!08}{10\!\cdots\!21}a^{13}+\frac{26\!\cdots\!70}{15\!\cdots\!03}a^{12}-\frac{69\!\cdots\!10}{35\!\cdots\!07}a^{11}-\frac{16\!\cdots\!69}{15\!\cdots\!03}a^{10}+\frac{23\!\cdots\!40}{95\!\cdots\!11}a^{9}-\frac{40\!\cdots\!67}{10\!\cdots\!21}a^{8}-\frac{46\!\cdots\!52}{35\!\cdots\!07}a^{7}-\frac{23\!\cdots\!13}{10\!\cdots\!21}a^{6}-\frac{26\!\cdots\!47}{10\!\cdots\!21}a^{5}-\frac{84\!\cdots\!73}{10\!\cdots\!21}a^{4}-\frac{25\!\cdots\!81}{35\!\cdots\!07}a^{3}-\frac{30\!\cdots\!82}{10\!\cdots\!21}a^{2}-\frac{99\!\cdots\!51}{35\!\cdots\!07}a-\frac{73\!\cdots\!07}{28\!\cdots\!67}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $3$

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $13$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{87\!\cdots\!59}{10\!\cdots\!21}a^{26}-\frac{17\!\cdots\!32}{10\!\cdots\!21}a^{25}+\frac{10\!\cdots\!35}{10\!\cdots\!21}a^{24}-\frac{28\!\cdots\!80}{95\!\cdots\!11}a^{23}+\frac{41\!\cdots\!30}{10\!\cdots\!21}a^{22}-\frac{31\!\cdots\!53}{22\!\cdots\!43}a^{21}+\frac{31\!\cdots\!52}{10\!\cdots\!21}a^{20}+\frac{63\!\cdots\!37}{11\!\cdots\!69}a^{19}+\frac{18\!\cdots\!26}{10\!\cdots\!21}a^{18}+\frac{63\!\cdots\!28}{10\!\cdots\!21}a^{17}+\frac{68\!\cdots\!39}{10\!\cdots\!21}a^{16}+\frac{11\!\cdots\!17}{43\!\cdots\!47}a^{15}+\frac{16\!\cdots\!82}{10\!\cdots\!21}a^{14}+\frac{68\!\cdots\!62}{10\!\cdots\!21}a^{13}+\frac{34\!\cdots\!61}{15\!\cdots\!03}a^{12}+\frac{41\!\cdots\!88}{35\!\cdots\!07}a^{11}+\frac{64\!\cdots\!95}{10\!\cdots\!21}a^{10}+\frac{74\!\cdots\!01}{10\!\cdots\!21}a^{9}+\frac{26\!\cdots\!55}{10\!\cdots\!21}a^{8}+\frac{10\!\cdots\!64}{35\!\cdots\!07}a^{7}+\frac{12\!\cdots\!86}{10\!\cdots\!21}a^{6}-\frac{50\!\cdots\!78}{10\!\cdots\!21}a^{5}+\frac{98\!\cdots\!91}{34\!\cdots\!91}a^{4}+\frac{26\!\cdots\!76}{35\!\cdots\!07}a^{3}+\frac{51\!\cdots\!67}{10\!\cdots\!21}a^{2}-\frac{37\!\cdots\!87}{35\!\cdots\!07}a-\frac{31\!\cdots\!67}{28\!\cdots\!67}$, $\frac{15\!\cdots\!18}{39\!\cdots\!23}a^{26}-\frac{11\!\cdots\!45}{10\!\cdots\!21}a^{25}+\frac{47\!\cdots\!76}{83\!\cdots\!09}a^{24}-\frac{20\!\cdots\!22}{10\!\cdots\!21}a^{23}+\frac{37\!\cdots\!01}{10\!\cdots\!21}a^{22}-\frac{16\!\cdots\!04}{15\!\cdots\!03}a^{21}+\frac{87\!\cdots\!84}{35\!\cdots\!07}a^{20}+\frac{19\!\cdots\!56}{10\!\cdots\!21}a^{19}+\frac{12\!\cdots\!79}{10\!\cdots\!21}a^{18}+\frac{23\!\cdots\!55}{10\!\cdots\!21}a^{17}+\frac{10\!\cdots\!94}{35\!\cdots\!07}a^{16}+\frac{13\!\cdots\!03}{10\!\cdots\!21}a^{15}+\frac{22\!\cdots\!88}{95\!\cdots\!11}a^{14}+\frac{89\!\cdots\!75}{22\!\cdots\!43}a^{13}-\frac{62\!\cdots\!09}{39\!\cdots\!23}a^{12}+\frac{96\!\cdots\!56}{95\!\cdots\!11}a^{11}-\frac{65\!\cdots\!61}{10\!\cdots\!21}a^{10}+\frac{25\!\cdots\!87}{15\!\cdots\!03}a^{9}-\frac{28\!\cdots\!49}{35\!\cdots\!07}a^{8}+\frac{39\!\cdots\!79}{10\!\cdots\!21}a^{7}+\frac{22\!\cdots\!69}{10\!\cdots\!21}a^{6}+\frac{31\!\cdots\!53}{10\!\cdots\!21}a^{5}+\frac{24\!\cdots\!34}{31\!\cdots\!37}a^{4}+\frac{29\!\cdots\!65}{10\!\cdots\!21}a^{3}+\frac{21\!\cdots\!30}{15\!\cdots\!03}a^{2}-\frac{34\!\cdots\!81}{35\!\cdots\!07}a-\frac{81\!\cdots\!54}{28\!\cdots\!67}$, $\frac{24\!\cdots\!10}{10\!\cdots\!21}a^{26}-\frac{62\!\cdots\!16}{10\!\cdots\!21}a^{25}+\frac{33\!\cdots\!77}{10\!\cdots\!21}a^{24}-\frac{12\!\cdots\!66}{11\!\cdots\!69}a^{23}+\frac{20\!\cdots\!17}{10\!\cdots\!21}a^{22}-\frac{20\!\cdots\!98}{34\!\cdots\!91}a^{21}+\frac{14\!\cdots\!53}{10\!\cdots\!21}a^{20}+\frac{74\!\cdots\!79}{35\!\cdots\!07}a^{19}+\frac{66\!\cdots\!92}{10\!\cdots\!21}a^{18}+\frac{13\!\cdots\!97}{10\!\cdots\!21}a^{17}+\frac{17\!\cdots\!63}{10\!\cdots\!21}a^{16}+\frac{24\!\cdots\!78}{35\!\cdots\!07}a^{15}+\frac{42\!\cdots\!56}{34\!\cdots\!91}a^{14}+\frac{74\!\cdots\!35}{34\!\cdots\!91}a^{13}-\frac{89\!\cdots\!39}{10\!\cdots\!21}a^{12}+\frac{19\!\cdots\!97}{35\!\cdots\!07}a^{11}-\frac{33\!\cdots\!21}{10\!\cdots\!21}a^{10}+\frac{91\!\cdots\!81}{10\!\cdots\!21}a^{9}-\frac{56\!\cdots\!64}{15\!\cdots\!03}a^{8}+\frac{69\!\cdots\!24}{35\!\cdots\!07}a^{7}+\frac{14\!\cdots\!51}{10\!\cdots\!21}a^{6}-\frac{12\!\cdots\!66}{10\!\cdots\!21}a^{5}+\frac{45\!\cdots\!33}{10\!\cdots\!21}a^{4}+\frac{19\!\cdots\!74}{11\!\cdots\!69}a^{3}+\frac{74\!\cdots\!38}{10\!\cdots\!21}a^{2}-\frac{61\!\cdots\!48}{35\!\cdots\!07}a-\frac{58\!\cdots\!68}{28\!\cdots\!67}$, $\frac{10\!\cdots\!97}{15\!\cdots\!03}a^{26}-\frac{28\!\cdots\!85}{15\!\cdots\!03}a^{25}+\frac{15\!\cdots\!90}{15\!\cdots\!03}a^{24}-\frac{12\!\cdots\!65}{35\!\cdots\!07}a^{23}+\frac{65\!\cdots\!13}{10\!\cdots\!21}a^{22}-\frac{20\!\cdots\!59}{10\!\cdots\!21}a^{21}+\frac{46\!\cdots\!64}{10\!\cdots\!21}a^{20}+\frac{21\!\cdots\!39}{50\!\cdots\!01}a^{19}+\frac{21\!\cdots\!01}{10\!\cdots\!21}a^{18}+\frac{41\!\cdots\!17}{10\!\cdots\!21}a^{17}+\frac{53\!\cdots\!76}{10\!\cdots\!21}a^{16}+\frac{77\!\cdots\!08}{35\!\cdots\!07}a^{15}+\frac{37\!\cdots\!52}{10\!\cdots\!21}a^{14}+\frac{73\!\cdots\!53}{10\!\cdots\!21}a^{13}-\frac{28\!\cdots\!74}{95\!\cdots\!11}a^{12}+\frac{20\!\cdots\!50}{11\!\cdots\!69}a^{11}-\frac{11\!\cdots\!96}{10\!\cdots\!21}a^{10}+\frac{30\!\cdots\!23}{10\!\cdots\!21}a^{9}-\frac{15\!\cdots\!95}{10\!\cdots\!21}a^{8}+\frac{76\!\cdots\!62}{11\!\cdots\!69}a^{7}+\frac{39\!\cdots\!09}{10\!\cdots\!21}a^{6}+\frac{14\!\cdots\!43}{10\!\cdots\!21}a^{5}+\frac{97\!\cdots\!54}{10\!\cdots\!21}a^{4}+\frac{16\!\cdots\!54}{31\!\cdots\!37}a^{3}+\frac{21\!\cdots\!53}{95\!\cdots\!11}a^{2}-\frac{21\!\cdots\!91}{35\!\cdots\!07}a-\frac{21\!\cdots\!09}{28\!\cdots\!67}$, $\frac{58\!\cdots\!91}{35\!\cdots\!07}a^{26}-\frac{40\!\cdots\!22}{95\!\cdots\!11}a^{25}+\frac{73\!\cdots\!81}{31\!\cdots\!37}a^{24}-\frac{82\!\cdots\!18}{10\!\cdots\!21}a^{23}+\frac{14\!\cdots\!02}{10\!\cdots\!21}a^{22}-\frac{45\!\cdots\!37}{10\!\cdots\!21}a^{21}+\frac{11\!\cdots\!80}{11\!\cdots\!69}a^{20}+\frac{13\!\cdots\!55}{10\!\cdots\!21}a^{19}+\frac{69\!\cdots\!52}{15\!\cdots\!03}a^{18}+\frac{25\!\cdots\!39}{28\!\cdots\!33}a^{17}+\frac{41\!\cdots\!54}{35\!\cdots\!07}a^{16}+\frac{53\!\cdots\!61}{10\!\cdots\!21}a^{15}+\frac{27\!\cdots\!82}{28\!\cdots\!33}a^{14}+\frac{16\!\cdots\!52}{10\!\cdots\!21}a^{13}-\frac{70\!\cdots\!41}{11\!\cdots\!97}a^{12}+\frac{41\!\cdots\!04}{10\!\cdots\!21}a^{11}-\frac{25\!\cdots\!25}{10\!\cdots\!21}a^{10}+\frac{96\!\cdots\!82}{15\!\cdots\!03}a^{9}-\frac{16\!\cdots\!44}{55\!\cdots\!89}a^{8}+\frac{15\!\cdots\!23}{10\!\cdots\!21}a^{7}+\frac{98\!\cdots\!38}{10\!\cdots\!21}a^{6}+\frac{14\!\cdots\!02}{10\!\cdots\!21}a^{5}+\frac{93\!\cdots\!33}{35\!\cdots\!07}a^{4}+\frac{12\!\cdots\!11}{10\!\cdots\!21}a^{3}+\frac{58\!\cdots\!68}{10\!\cdots\!21}a^{2}-\frac{42\!\cdots\!17}{35\!\cdots\!07}a-\frac{46\!\cdots\!82}{28\!\cdots\!67}$, $\frac{39\!\cdots\!89}{15\!\cdots\!03}a^{26}-\frac{24\!\cdots\!95}{35\!\cdots\!07}a^{25}+\frac{39\!\cdots\!63}{10\!\cdots\!21}a^{24}-\frac{12\!\cdots\!24}{95\!\cdots\!11}a^{23}+\frac{67\!\cdots\!05}{28\!\cdots\!33}a^{22}-\frac{27\!\cdots\!26}{39\!\cdots\!23}a^{21}+\frac{24\!\cdots\!57}{15\!\cdots\!03}a^{20}+\frac{25\!\cdots\!99}{10\!\cdots\!21}a^{19}+\frac{76\!\cdots\!96}{10\!\cdots\!21}a^{18}+\frac{47\!\cdots\!20}{35\!\cdots\!07}a^{17}+\frac{18\!\cdots\!50}{10\!\cdots\!21}a^{16}+\frac{22\!\cdots\!63}{28\!\cdots\!33}a^{15}+\frac{67\!\cdots\!32}{10\!\cdots\!21}a^{14}+\frac{28\!\cdots\!35}{11\!\cdots\!97}a^{13}-\frac{13\!\cdots\!13}{10\!\cdots\!21}a^{12}+\frac{67\!\cdots\!84}{10\!\cdots\!21}a^{11}-\frac{46\!\cdots\!01}{10\!\cdots\!21}a^{10}+\frac{11\!\cdots\!16}{10\!\cdots\!79}a^{9}-\frac{61\!\cdots\!02}{10\!\cdots\!21}a^{8}+\frac{25\!\cdots\!21}{10\!\cdots\!21}a^{7}+\frac{17\!\cdots\!44}{15\!\cdots\!03}a^{6}-\frac{30\!\cdots\!07}{35\!\cdots\!07}a^{5}+\frac{36\!\cdots\!05}{95\!\cdots\!11}a^{4}+\frac{20\!\cdots\!05}{10\!\cdots\!21}a^{3}+\frac{31\!\cdots\!20}{35\!\cdots\!07}a^{2}-\frac{22\!\cdots\!92}{11\!\cdots\!69}a-\frac{24\!\cdots\!75}{96\!\cdots\!89}$, $\frac{49\!\cdots\!00}{10\!\cdots\!21}a^{26}-\frac{43\!\cdots\!20}{35\!\cdots\!07}a^{25}+\frac{70\!\cdots\!66}{10\!\cdots\!21}a^{24}-\frac{23\!\cdots\!09}{10\!\cdots\!21}a^{23}+\frac{63\!\cdots\!40}{15\!\cdots\!03}a^{22}-\frac{14\!\cdots\!44}{11\!\cdots\!69}a^{21}+\frac{30\!\cdots\!80}{10\!\cdots\!21}a^{20}+\frac{12\!\cdots\!23}{15\!\cdots\!03}a^{19}+\frac{13\!\cdots\!33}{10\!\cdots\!21}a^{18}+\frac{86\!\cdots\!66}{35\!\cdots\!07}a^{17}+\frac{34\!\cdots\!31}{10\!\cdots\!21}a^{16}+\frac{15\!\cdots\!89}{10\!\cdots\!21}a^{15}+\frac{18\!\cdots\!67}{10\!\cdots\!21}a^{14}+\frac{23\!\cdots\!03}{50\!\cdots\!01}a^{13}-\frac{22\!\cdots\!17}{10\!\cdots\!21}a^{12}+\frac{39\!\cdots\!33}{34\!\cdots\!91}a^{11}-\frac{75\!\cdots\!09}{95\!\cdots\!11}a^{10}+\frac{25\!\cdots\!83}{13\!\cdots\!41}a^{9}-\frac{10\!\cdots\!21}{95\!\cdots\!11}a^{8}+\frac{65\!\cdots\!69}{15\!\cdots\!03}a^{7}+\frac{33\!\cdots\!60}{15\!\cdots\!03}a^{6}+\frac{47\!\cdots\!92}{35\!\cdots\!07}a^{5}+\frac{11\!\cdots\!46}{15\!\cdots\!03}a^{4}+\frac{34\!\cdots\!12}{10\!\cdots\!21}a^{3}+\frac{49\!\cdots\!80}{35\!\cdots\!07}a^{2}-\frac{35\!\cdots\!65}{11\!\cdots\!69}a-\frac{13\!\cdots\!60}{32\!\cdots\!63}$, $\frac{39\!\cdots\!67}{34\!\cdots\!91}a^{26}-\frac{66\!\cdots\!94}{20\!\cdots\!13}a^{25}+\frac{25\!\cdots\!82}{15\!\cdots\!03}a^{24}-\frac{20\!\cdots\!54}{35\!\cdots\!07}a^{23}+\frac{12\!\cdots\!31}{10\!\cdots\!21}a^{22}-\frac{35\!\cdots\!76}{10\!\cdots\!21}a^{21}+\frac{84\!\cdots\!24}{10\!\cdots\!21}a^{20}-\frac{19\!\cdots\!78}{13\!\cdots\!41}a^{19}+\frac{35\!\cdots\!35}{10\!\cdots\!21}a^{18}+\frac{52\!\cdots\!88}{95\!\cdots\!11}a^{17}+\frac{77\!\cdots\!54}{10\!\cdots\!21}a^{16}+\frac{40\!\cdots\!39}{11\!\cdots\!69}a^{15}-\frac{19\!\cdots\!74}{10\!\cdots\!21}a^{14}+\frac{12\!\cdots\!07}{10\!\cdots\!21}a^{13}-\frac{11\!\cdots\!47}{15\!\cdots\!03}a^{12}+\frac{10\!\cdots\!17}{35\!\cdots\!07}a^{11}-\frac{28\!\cdots\!66}{10\!\cdots\!21}a^{10}+\frac{58\!\cdots\!23}{10\!\cdots\!21}a^{9}-\frac{42\!\cdots\!58}{10\!\cdots\!21}a^{8}+\frac{42\!\cdots\!74}{35\!\cdots\!07}a^{7}+\frac{29\!\cdots\!22}{10\!\cdots\!21}a^{6}+\frac{90\!\cdots\!56}{10\!\cdots\!21}a^{5}+\frac{92\!\cdots\!77}{10\!\cdots\!21}a^{4}+\frac{22\!\cdots\!54}{35\!\cdots\!07}a^{3}+\frac{26\!\cdots\!96}{10\!\cdots\!21}a^{2}-\frac{16\!\cdots\!77}{35\!\cdots\!07}a-\frac{21\!\cdots\!13}{28\!\cdots\!67}$, $\frac{13\!\cdots\!52}{63\!\cdots\!69}a^{26}-\frac{11\!\cdots\!07}{14\!\cdots\!61}a^{25}+\frac{16\!\cdots\!31}{44\!\cdots\!83}a^{24}-\frac{59\!\cdots\!65}{44\!\cdots\!83}a^{23}+\frac{13\!\cdots\!52}{44\!\cdots\!83}a^{22}-\frac{12\!\cdots\!01}{14\!\cdots\!61}a^{21}+\frac{12\!\cdots\!70}{63\!\cdots\!69}a^{20}-\frac{70\!\cdots\!67}{44\!\cdots\!83}a^{19}+\frac{43\!\cdots\!69}{63\!\cdots\!69}a^{18}+\frac{28\!\cdots\!25}{54\!\cdots\!43}a^{17}+\frac{33\!\cdots\!27}{44\!\cdots\!83}a^{16}+\frac{24\!\cdots\!74}{44\!\cdots\!83}a^{15}-\frac{21\!\cdots\!27}{44\!\cdots\!83}a^{14}+\frac{34\!\cdots\!90}{14\!\cdots\!61}a^{13}-\frac{13\!\cdots\!27}{44\!\cdots\!83}a^{12}+\frac{32\!\cdots\!59}{44\!\cdots\!83}a^{11}-\frac{61\!\cdots\!71}{63\!\cdots\!69}a^{10}+\frac{32\!\cdots\!12}{21\!\cdots\!23}a^{9}-\frac{73\!\cdots\!80}{44\!\cdots\!83}a^{8}+\frac{13\!\cdots\!55}{44\!\cdots\!83}a^{7}-\frac{86\!\cdots\!50}{63\!\cdots\!69}a^{6}+\frac{18\!\cdots\!76}{49\!\cdots\!87}a^{5}+\frac{13\!\cdots\!30}{44\!\cdots\!83}a^{4}+\frac{30\!\cdots\!38}{44\!\cdots\!83}a^{3}-\frac{21\!\cdots\!15}{47\!\cdots\!31}a^{2}-\frac{97\!\cdots\!33}{70\!\cdots\!41}a+\frac{98\!\cdots\!33}{14\!\cdots\!39}$, $\frac{14\!\cdots\!27}{31\!\cdots\!37}a^{26}-\frac{44\!\cdots\!98}{35\!\cdots\!07}a^{25}+\frac{23\!\cdots\!33}{35\!\cdots\!07}a^{24}-\frac{27\!\cdots\!08}{11\!\cdots\!69}a^{23}+\frac{43\!\cdots\!79}{95\!\cdots\!11}a^{22}-\frac{47\!\cdots\!39}{35\!\cdots\!07}a^{21}+\frac{11\!\cdots\!60}{35\!\cdots\!07}a^{20}-\frac{96\!\cdots\!57}{11\!\cdots\!69}a^{19}+\frac{46\!\cdots\!90}{35\!\cdots\!07}a^{18}+\frac{72\!\cdots\!32}{35\!\cdots\!07}a^{17}+\frac{10\!\cdots\!22}{35\!\cdots\!07}a^{16}+\frac{30\!\cdots\!54}{22\!\cdots\!57}a^{15}-\frac{21\!\cdots\!03}{35\!\cdots\!07}a^{14}+\frac{16\!\cdots\!18}{35\!\cdots\!07}a^{13}-\frac{10\!\cdots\!72}{35\!\cdots\!07}a^{12}+\frac{63\!\cdots\!41}{50\!\cdots\!99}a^{11}-\frac{36\!\cdots\!60}{35\!\cdots\!07}a^{10}+\frac{79\!\cdots\!87}{35\!\cdots\!07}a^{9}-\frac{57\!\cdots\!83}{35\!\cdots\!07}a^{8}+\frac{80\!\cdots\!11}{16\!\cdots\!67}a^{7}+\frac{34\!\cdots\!84}{35\!\cdots\!07}a^{6}+\frac{22\!\cdots\!40}{35\!\cdots\!07}a^{5}+\frac{82\!\cdots\!38}{74\!\cdots\!81}a^{4}+\frac{27\!\cdots\!09}{11\!\cdots\!69}a^{3}+\frac{41\!\cdots\!28}{35\!\cdots\!07}a^{2}+\frac{52\!\cdots\!60}{11\!\cdots\!69}a-\frac{46\!\cdots\!16}{96\!\cdots\!89}$, $\frac{39\!\cdots\!63}{11\!\cdots\!69}a^{26}-\frac{10\!\cdots\!45}{10\!\cdots\!21}a^{25}+\frac{18\!\cdots\!45}{35\!\cdots\!07}a^{24}-\frac{18\!\cdots\!20}{95\!\cdots\!11}a^{23}+\frac{38\!\cdots\!01}{95\!\cdots\!11}a^{22}-\frac{17\!\cdots\!75}{15\!\cdots\!03}a^{21}+\frac{32\!\cdots\!74}{11\!\cdots\!69}a^{20}-\frac{16\!\cdots\!81}{10\!\cdots\!21}a^{19}+\frac{12\!\cdots\!98}{10\!\cdots\!21}a^{18}+\frac{20\!\cdots\!75}{15\!\cdots\!03}a^{17}+\frac{86\!\cdots\!49}{35\!\cdots\!07}a^{16}+\frac{11\!\cdots\!81}{10\!\cdots\!21}a^{15}-\frac{15\!\cdots\!46}{10\!\cdots\!21}a^{14}+\frac{61\!\cdots\!98}{15\!\cdots\!03}a^{13}-\frac{10\!\cdots\!24}{35\!\cdots\!07}a^{12}+\frac{17\!\cdots\!63}{15\!\cdots\!03}a^{11}-\frac{16\!\cdots\!99}{15\!\cdots\!03}a^{10}+\frac{24\!\cdots\!15}{10\!\cdots\!21}a^{9}-\frac{22\!\cdots\!23}{11\!\cdots\!69}a^{8}+\frac{15\!\cdots\!14}{34\!\cdots\!91}a^{7}-\frac{20\!\cdots\!06}{10\!\cdots\!21}a^{6}+\frac{12\!\cdots\!09}{10\!\cdots\!21}a^{5}+\frac{90\!\cdots\!91}{35\!\cdots\!07}a^{4}-\frac{44\!\cdots\!94}{10\!\cdots\!21}a^{3}+\frac{15\!\cdots\!67}{10\!\cdots\!21}a^{2}+\frac{22\!\cdots\!82}{31\!\cdots\!37}a-\frac{18\!\cdots\!14}{28\!\cdots\!67}$, $\frac{17\!\cdots\!90}{10\!\cdots\!21}a^{26}-\frac{66\!\cdots\!46}{15\!\cdots\!03}a^{25}+\frac{24\!\cdots\!45}{10\!\cdots\!21}a^{24}-\frac{31\!\cdots\!50}{39\!\cdots\!23}a^{23}+\frac{15\!\cdots\!71}{10\!\cdots\!21}a^{22}-\frac{46\!\cdots\!37}{10\!\cdots\!21}a^{21}+\frac{10\!\cdots\!13}{10\!\cdots\!21}a^{20}+\frac{35\!\cdots\!28}{50\!\cdots\!01}a^{19}+\frac{48\!\cdots\!43}{10\!\cdots\!21}a^{18}+\frac{92\!\cdots\!25}{10\!\cdots\!21}a^{17}+\frac{11\!\cdots\!57}{10\!\cdots\!21}a^{16}+\frac{25\!\cdots\!08}{50\!\cdots\!01}a^{15}+\frac{53\!\cdots\!27}{10\!\cdots\!21}a^{14}+\frac{16\!\cdots\!92}{10\!\cdots\!21}a^{13}-\frac{79\!\cdots\!04}{10\!\cdots\!21}a^{12}+\frac{14\!\cdots\!10}{35\!\cdots\!07}a^{11}-\frac{28\!\cdots\!92}{10\!\cdots\!21}a^{10}+\frac{98\!\cdots\!94}{15\!\cdots\!03}a^{9}-\frac{36\!\cdots\!63}{10\!\cdots\!21}a^{8}+\frac{16\!\cdots\!32}{11\!\cdots\!97}a^{7}+\frac{86\!\cdots\!43}{10\!\cdots\!21}a^{6}-\frac{15\!\cdots\!57}{15\!\cdots\!03}a^{5}+\frac{21\!\cdots\!02}{10\!\cdots\!21}a^{4}+\frac{13\!\cdots\!00}{11\!\cdots\!69}a^{3}+\frac{47\!\cdots\!79}{10\!\cdots\!21}a^{2}-\frac{24\!\cdots\!68}{11\!\cdots\!97}a-\frac{78\!\cdots\!14}{41\!\cdots\!81}$, $\frac{12\!\cdots\!22}{10\!\cdots\!21}a^{26}-\frac{31\!\cdots\!08}{10\!\cdots\!21}a^{25}+\frac{17\!\cdots\!40}{10\!\cdots\!21}a^{24}-\frac{58\!\cdots\!10}{10\!\cdots\!21}a^{23}+\frac{11\!\cdots\!32}{11\!\cdots\!69}a^{22}-\frac{46\!\cdots\!85}{15\!\cdots\!03}a^{21}+\frac{10\!\cdots\!63}{15\!\cdots\!03}a^{20}+\frac{18\!\cdots\!83}{10\!\cdots\!21}a^{19}+\frac{82\!\cdots\!29}{24\!\cdots\!27}a^{18}+\frac{30\!\cdots\!23}{48\!\cdots\!13}a^{17}+\frac{91\!\cdots\!26}{10\!\cdots\!21}a^{16}+\frac{38\!\cdots\!36}{10\!\cdots\!21}a^{15}+\frac{26\!\cdots\!40}{35\!\cdots\!07}a^{14}+\frac{12\!\cdots\!23}{10\!\cdots\!21}a^{13}-\frac{46\!\cdots\!08}{10\!\cdots\!21}a^{12}+\frac{31\!\cdots\!97}{10\!\cdots\!21}a^{11}-\frac{30\!\cdots\!71}{16\!\cdots\!67}a^{10}+\frac{52\!\cdots\!81}{10\!\cdots\!21}a^{9}-\frac{26\!\cdots\!73}{10\!\cdots\!21}a^{8}+\frac{24\!\cdots\!12}{22\!\cdots\!43}a^{7}+\frac{19\!\cdots\!01}{35\!\cdots\!07}a^{6}+\frac{19\!\cdots\!72}{10\!\cdots\!21}a^{5}+\frac{28\!\cdots\!48}{95\!\cdots\!11}a^{4}+\frac{92\!\cdots\!15}{10\!\cdots\!21}a^{3}+\frac{40\!\cdots\!93}{10\!\cdots\!21}a^{2}-\frac{44\!\cdots\!77}{50\!\cdots\!01}a-\frac{34\!\cdots\!07}{28\!\cdots\!67}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2789984396899.383 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{13}\cdot 2789984396899.383 \cdot 2}{2\cdot\sqrt{4907350451606845763597379498834801987276076711}}\cr\approx \mathstrut & 1.89472646812597 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^27 - 3*x^26 + 15*x^25 - 53*x^24 + 106*x^23 - 298*x^22 + 714*x^21 - 199*x^20 + 2747*x^19 + 4180*x^18 + 4767*x^17 + 27487*x^16 - 7928*x^15 + 93863*x^14 - 80586*x^13 + 257840*x^12 - 253867*x^11 + 459460*x^10 - 363114*x^9 + 981160*x^8 + 143119*x^7 - 202978*x^6 + 143097*x^5 + 629777*x^4 + 25669*x^3 - 205103*x^2 - 65505*x + 40293)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^27 - 3*x^26 + 15*x^25 - 53*x^24 + 106*x^23 - 298*x^22 + 714*x^21 - 199*x^20 + 2747*x^19 + 4180*x^18 + 4767*x^17 + 27487*x^16 - 7928*x^15 + 93863*x^14 - 80586*x^13 + 257840*x^12 - 253867*x^11 + 459460*x^10 - 363114*x^9 + 981160*x^8 + 143119*x^7 - 202978*x^6 + 143097*x^5 + 629777*x^4 + 25669*x^3 - 205103*x^2 - 65505*x + 40293, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^27 - 3*x^26 + 15*x^25 - 53*x^24 + 106*x^23 - 298*x^22 + 714*x^21 - 199*x^20 + 2747*x^19 + 4180*x^18 + 4767*x^17 + 27487*x^16 - 7928*x^15 + 93863*x^14 - 80586*x^13 + 257840*x^12 - 253867*x^11 + 459460*x^10 - 363114*x^9 + 981160*x^8 + 143119*x^7 - 202978*x^6 + 143097*x^5 + 629777*x^4 + 25669*x^3 - 205103*x^2 - 65505*x + 40293);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 3*x^26 + 15*x^25 - 53*x^24 + 106*x^23 - 298*x^22 + 714*x^21 - 199*x^20 + 2747*x^19 + 4180*x^18 + 4767*x^17 + 27487*x^16 - 7928*x^15 + 93863*x^14 - 80586*x^13 + 257840*x^12 - 253867*x^11 + 459460*x^10 - 363114*x^9 + 981160*x^8 + 143119*x^7 - 202978*x^6 + 143097*x^5 + 629777*x^4 + 25669*x^3 - 205103*x^2 - 65505*x + 40293);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{27}$ (as 27T8):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 54
The 15 conjugacy class representatives for $D_{27}$
Character table for $D_{27}$

Intermediate fields

3.1.3271.1, 9.1.114478037712481.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $27$ ${\href{/padicField/3.2.0.1}{2} }^{13}{,}\,{\href{/padicField/3.1.0.1}{1} }$ $27$ ${\href{/padicField/7.2.0.1}{2} }^{13}{,}\,{\href{/padicField/7.1.0.1}{1} }$ ${\href{/padicField/11.2.0.1}{2} }^{13}{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.2.0.1}{2} }^{13}{,}\,{\href{/padicField/13.1.0.1}{1} }$ ${\href{/padicField/17.2.0.1}{2} }^{13}{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.9.0.1}{9} }^{3}$ $27$ $27$ ${\href{/padicField/31.2.0.1}{2} }^{13}{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.2.0.1}{2} }^{13}{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.9.0.1}{9} }^{3}$ $27$ ${\href{/padicField/47.2.0.1}{2} }^{13}{,}\,{\href{/padicField/47.1.0.1}{1} }$ $27$ ${\href{/padicField/59.2.0.1}{2} }^{13}{,}\,{\href{/padicField/59.1.0.1}{1} }$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3271\) Copy content Toggle raw display $\Q_{3271}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.3271.2t1.a.a$1$ $ 3271 $ \(\Q(\sqrt{-3271}) \) $C_2$ (as 2T1) $1$ $-1$
* 2.3271.3t2.a.a$2$ $ 3271 $ 3.1.3271.1 $S_3$ (as 3T2) $1$ $0$
* 2.3271.9t3.a.b$2$ $ 3271 $ 9.1.114478037712481.1 $D_{9}$ (as 9T3) $1$ $0$
* 2.3271.9t3.a.c$2$ $ 3271 $ 9.1.114478037712481.1 $D_{9}$ (as 9T3) $1$ $0$
* 2.3271.9t3.a.a$2$ $ 3271 $ 9.1.114478037712481.1 $D_{9}$ (as 9T3) $1$ $0$
* 2.3271.27t8.a.b$2$ $ 3271 $ 27.1.4907350451606845763597379498834801987276076711.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.3271.27t8.a.g$2$ $ 3271 $ 27.1.4907350451606845763597379498834801987276076711.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.3271.27t8.a.f$2$ $ 3271 $ 27.1.4907350451606845763597379498834801987276076711.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.3271.27t8.a.e$2$ $ 3271 $ 27.1.4907350451606845763597379498834801987276076711.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.3271.27t8.a.d$2$ $ 3271 $ 27.1.4907350451606845763597379498834801987276076711.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.3271.27t8.a.c$2$ $ 3271 $ 27.1.4907350451606845763597379498834801987276076711.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.3271.27t8.a.a$2$ $ 3271 $ 27.1.4907350451606845763597379498834801987276076711.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.3271.27t8.a.i$2$ $ 3271 $ 27.1.4907350451606845763597379498834801987276076711.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.3271.27t8.a.h$2$ $ 3271 $ 27.1.4907350451606845763597379498834801987276076711.1 $D_{27}$ (as 27T8) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.