Normalized defining polynomial
\( x^{27} + 2x - 2 \)
Invariants
Degree: | $27$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[1, 13]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(-30584108276851339073914090992215858057282846720\)
\(\medspace = -\,2^{26}\cdot 5\cdot 7\cdot 11\cdot 80071\cdot 14\!\cdots\!13\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(52.68\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(2\), \(5\), \(7\), \(11\), \(80071\), \(14783\!\cdots\!27013\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | $\Q(\sqrt{-45573\!\cdots\!00355}$) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$a-1$, $a^{26}+a^{25}+a^{24}+a^{23}+a^{22}+a^{21}+a^{20}+a^{19}+a^{9}-a+1$, $a^{26}+a^{24}+a^{22}+a^{20}+a^{18}+a^{16}+a^{14}+a^{12}+a^{10}+a^{8}+a^{6}+a^{4}+a+1$, $a^{25}+2a^{24}+2a^{23}+3a^{22}+2a^{21}+a^{20}+a^{19}-a^{18}-a^{17}-a^{15}+a^{14}+a^{13}+a^{11}-a^{10}-2a^{9}-a^{8}-3a^{7}-a^{6}-a^{4}+2a^{3}+a^{2}-a+1$, $a^{26}+a^{25}+2a^{24}+2a^{23}+a^{22}+a^{21}+a^{20}+a^{17}+a^{16}+a^{14}+2a^{13}+a^{12}+2a^{4}+2a^{3}-a^{2}-a+3$, $a^{25}+a^{24}+2a^{23}+2a^{22}-a^{19}-a^{16}+a^{15}+a^{14}+2a^{13}+a^{12}-a^{11}-a^{9}-a^{7}-a^{6}+2a^{5}+a^{4}+2a^{3}-a^{2}-a+1$, $3a^{26}+2a^{25}+2a^{24}+2a^{23}+2a^{22}+2a^{21}+2a^{20}+a^{19}+a^{18}+a^{17}+2a^{16}+2a^{15}+a^{14}+a^{12}+a^{11}+a^{10}+a^{9}+a^{8}+a^{5}+2a^{4}+a^{3}-a^{2}-a+7$, $2a^{25}+2a^{24}-2a^{22}-a^{21}+a^{20}+2a^{19}+a^{18}-a^{17}-a^{16}+a^{14}+a^{13}-a^{11}-a^{10}+2a^{8}+2a^{7}-3a^{5}-2a^{4}+a^{3}+4a^{2}+2a-3$, $a^{26}+a^{25}-a^{23}-a^{22}+a^{20}+a^{19}-a^{17}-a^{16}-a^{15}-a^{14}+a^{12}+a^{11}-a^{9}-2a^{8}-a^{7}+a^{6}+2a^{5}-a^{3}+1$, $a^{25}+a^{24}+a^{20}+a^{19}-a^{17}+a^{15}+a^{14}-a^{13}+a^{10}+a^{9}-a^{8}-a^{7}+2a^{6}-a^{2}+a+1$, $3a^{26}+4a^{25}+2a^{24}+3a^{23}+3a^{22}+a^{21}+3a^{20}+a^{19}+a^{18}+3a^{17}+2a^{15}+3a^{14}-a^{13}+3a^{12}+a^{11}-a^{10}+3a^{9}-a^{8}+a^{7}+2a^{6}-a^{5}+2a^{4}+2a^{3}-3a^{2}+4a+5$, $a^{25}+2a^{24}+a^{23}+a^{22}+a^{21}-a^{19}+a^{15}+2a^{14}+a^{13}+a^{11}-2a^{9}-a^{8}+a^{7}-a^{6}+a^{5}+2a^{4}+a^{3}-a^{2}+a-1$, $a^{26}-a^{25}+2a^{24}-a^{23}+2a^{22}-2a^{21}+a^{20}-3a^{19}+a^{18}-2a^{17}+2a^{16}-a^{15}+2a^{14}-a^{13}+a^{12}-a^{11}-a^{9}-a^{8}-a^{6}+2a^{5}-a^{4}+3a^{3}-3a^{2}+3a-3$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 6660614872502.112 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{13}\cdot 6660614872502.112 \cdot 1}{2\cdot\sqrt{30584108276851339073914090992215858057282846720}}\cr\approx \mathstrut & 0.905950982162878 \end{aligned}\] (assuming GRH)
Galois group
A non-solvable group of order 10888869450418352160768000000 |
The 3010 conjugacy class representatives for $S_{27}$ are not computed |
Character table for $S_{27}$ is not computed |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.9.0.1}{9} }^{3}$ | R | R | R | $21{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.10.0.1}{10} }^{2}{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.3.0.1}{3} }$ | $23{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | $18{,}\,{\href{/padicField/23.9.0.1}{9} }$ | ${\href{/padicField/29.14.0.1}{14} }{,}\,{\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | $18{,}\,{\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.7.0.1}{7} }{,}\,{\href{/padicField/37.5.0.1}{5} }^{3}{,}\,{\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.2.0.1}{2} }$ | $26{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.12.0.1}{12} }{,}\,{\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.13.0.1}{13} }{,}\,{\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.11.0.1}{11} }{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | $22{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| Deg $27$ | $27$ | $1$ | $26$ | |||
\(5\)
| $\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.7.0.1 | $x^{7} + 3 x + 3$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
5.8.0.1 | $x^{8} + x^{4} + 3 x^{2} + 4 x + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
5.9.0.1 | $x^{9} + 2 x^{3} + x + 3$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
\(7\)
| $\Q_{7}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
7.2.1.1 | $x^{2} + 21$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.5.0.1 | $x^{5} + x + 4$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
7.7.0.1 | $x^{7} + 6 x + 4$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
7.12.0.1 | $x^{12} + 2 x^{8} + 5 x^{7} + 3 x^{6} + 2 x^{5} + 4 x^{4} + 5 x^{2} + 3$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
\(11\)
| $\Q_{11}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
11.2.1.2 | $x^{2} + 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
Deg $24$ | $1$ | $24$ | $0$ | $C_{24}$ | $[\ ]^{24}$ | ||
\(80071\)
| $\Q_{80071}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | ||
Deg $7$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | ||
Deg $8$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | ||
\(147\!\cdots\!013\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | ||
Deg $14$ | $1$ | $14$ | $0$ | $C_{14}$ | $[\ ]^{14}$ |