Normalized defining polynomial
\( x^{27} - 4x - 4 \)
Invariants
Degree: | $27$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[1, 13]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(-28105327126796183803132932513380581740627623936\)
\(\medspace = -\,2^{26}\cdot 263\cdot 15\!\cdots\!73\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(52.52\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(2\), \(263\), \(15924\!\cdots\!29573\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | $\Q(\sqrt{-41880\!\cdots\!77699}$) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2}a^{14}$, $\frac{1}{2}a^{15}$, $\frac{1}{2}a^{16}$, $\frac{1}{2}a^{17}$, $\frac{1}{2}a^{18}$, $\frac{1}{2}a^{19}$, $\frac{1}{2}a^{20}$, $\frac{1}{2}a^{21}$, $\frac{1}{2}a^{22}$, $\frac{1}{2}a^{23}$, $\frac{1}{2}a^{24}$, $\frac{1}{2}a^{25}$, $\frac{1}{2}a^{26}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{1}{2}a^{14}-a-1$, $a+1$, $\frac{1}{2}a^{14}+a^{7}+1$, $\frac{1}{2}a^{18}-a-1$, $\frac{1}{2}a^{26}+\frac{1}{2}a^{21}-\frac{1}{2}a^{20}+\frac{1}{2}a^{19}-\frac{1}{2}a^{18}+\frac{1}{2}a^{17}-\frac{1}{2}a^{16}+\frac{1}{2}a^{15}-\frac{1}{2}a^{14}-a^{9}+a^{8}-a^{5}+a^{4}+a^{3}-a-1$, $\frac{1}{2}a^{26}-\frac{1}{2}a^{25}+\frac{1}{2}a^{24}-\frac{1}{2}a^{22}+\frac{1}{2}a^{21}-\frac{1}{2}a^{19}+\frac{1}{2}a^{18}-a^{17}+a^{16}-\frac{1}{2}a^{15}+a^{13}-a^{11}-a^{9}+a^{8}+2a^{5}-a^{4}-a^{3}-a-1$, $\frac{1}{2}a^{25}+\frac{1}{2}a^{23}-\frac{1}{2}a^{22}+\frac{1}{2}a^{20}+\frac{1}{2}a^{18}-a^{17}-\frac{1}{2}a^{16}+a^{13}-a^{12}+a^{9}+2a^{8}-a^{7}-2a^{5}+a^{4}+a^{3}-a^{2}-a-3$, $\frac{1}{2}a^{25}+\frac{1}{2}a^{24}+a^{23}+\frac{1}{2}a^{21}-a^{20}-\frac{1}{2}a^{19}-a^{18}+a^{15}+\frac{1}{2}a^{14}-a^{12}-2a^{11}-2a^{10}-2a^{9}+a^{7}+2a^{6}+2a^{5}+a^{4}-a^{3}-2a^{2}-2a-1$, $a^{11}-a^{6}+a+1$, $a^{26}-a^{23}+\frac{1}{2}a^{21}+a^{20}-\frac{1}{2}a^{19}-\frac{1}{2}a^{18}-\frac{3}{2}a^{17}+\frac{3}{2}a^{16}+\frac{1}{2}a^{15}+a^{14}-2a^{13}-a^{12}+2a^{10}+a^{9}-a^{8}-3a^{7}+2a^{5}+3a^{4}-2a^{3}-3a^{2}-2a-1$, $\frac{1}{2}a^{26}-\frac{3}{2}a^{25}-a^{23}+\frac{1}{2}a^{22}+a^{20}+\frac{1}{2}a^{19}+\frac{1}{2}a^{18}+\frac{1}{2}a^{17}+\frac{1}{2}a^{15}-a^{12}-a^{11}-2a^{10}-a^{9}-a^{8}+a^{7}+a^{6}+3a^{5}+2a^{4}+3a^{3}+a^{2}-5$, $\frac{1}{2}a^{26}-\frac{1}{2}a^{25}+\frac{1}{2}a^{24}-\frac{1}{2}a^{23}+\frac{1}{2}a^{22}-\frac{1}{2}a^{21}+\frac{1}{2}a^{18}-\frac{1}{2}a^{16}+\frac{1}{2}a^{15}-a^{12}+a^{9}-a^{7}+a^{5}-2a^{3}+a-1$, $\frac{1}{2}a^{25}+\frac{1}{2}a^{24}+\frac{1}{2}a^{23}+a^{22}+\frac{1}{2}a^{21}-\frac{1}{2}a^{18}-\frac{3}{2}a^{17}-\frac{3}{2}a^{16}-\frac{1}{2}a^{15}-\frac{1}{2}a^{14}-a^{13}+a^{12}+2a^{11}+a^{10}+2a^{9}+2a^{8}-4a^{4}-4a^{3}-a^{2}-3a-3$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 3583506363801.732 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{13}\cdot 3583506363801.732 \cdot 1}{2\cdot\sqrt{28105327126796183803132932513380581740627623936}}\cr\approx \mathstrut & 0.508454559811346 \end{aligned}\] (assuming GRH)
Galois group
A non-solvable group of order 10888869450418352160768000000 |
The 3010 conjugacy class representatives for $S_{27}$ are not computed |
Character table for $S_{27}$ is not computed |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.9.0.1}{9} }^{3}$ | $27$ | ${\href{/padicField/7.10.0.1}{10} }{,}\,{\href{/padicField/7.9.0.1}{9} }{,}\,{\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }$ | $25{,}\,{\href{/padicField/11.2.0.1}{2} }$ | $18{,}\,{\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | $22{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.12.0.1}{12} }{,}\,{\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.5.0.1}{5} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.14.0.1}{14} }{,}\,{\href{/padicField/23.7.0.1}{7} }{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.11.0.1}{11} }{,}\,{\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.5.0.1}{5} }{,}\,{\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.2.0.1}{2} }$ | ${\href{/padicField/31.11.0.1}{11} }{,}\,{\href{/padicField/31.7.0.1}{7} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }$ | $17{,}\,{\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.4.0.1}{4} }$ | $21{,}\,{\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ | $15{,}\,{\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.4.0.1}{4} }$ | $17{,}\,{\href{/padicField/47.10.0.1}{10} }$ | $17{,}\,{\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.14.0.1}{14} }{,}\,{\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| Deg $27$ | $27$ | $1$ | $26$ | |||
\(263\)
| $\Q_{263}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $21$ | $1$ | $21$ | $0$ | $C_{21}$ | $[\ ]^{21}$ | ||
\(159\!\cdots\!573\)
| $\Q_{15\!\cdots\!73}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $8$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | ||
Deg $16$ | $1$ | $16$ | $0$ | $C_{16}$ | $[\ ]^{16}$ |