Normalized defining polynomial
\( x^{27} - 2 x^{26} + 16 x^{25} + 62 x^{24} + 342 x^{23} + 1648 x^{22} + 6094 x^{21} + 15834 x^{20} + 34184 x^{19} + 61822 x^{18} + 112334 x^{17} + 237408 x^{16} + 637440 x^{15} + 1828206 x^{14} + 5099608 x^{13} + 12463122 x^{12} + 26430338 x^{11} + 48978608 x^{10} + 80603954 x^{9} + 116977534 x^{8} + 149538616 x^{7} + 167922122 x^{6} + 164525402 x^{5} + 137815936 x^{4} + 94764543 x^{3} + 50090044 x^{2} + 17954520 x + 3418472 \)
Invariants
Degree: | $27$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[1, 13]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-19977770457280786686246139734781554667936251692291\)\(\medspace = -\,7^{18}\cdot 419^{13}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $66.98$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $7, 419$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{5}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{9} - \frac{1}{8} a^{6} + \frac{1}{8} a^{3}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{10} - \frac{1}{8} a^{7} + \frac{1}{8} a^{4}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{11} - \frac{1}{8} a^{8} + \frac{1}{8} a^{5}$, $\frac{1}{32} a^{15} - \frac{1}{8} a^{11} + \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{8} a^{5} + \frac{13}{32} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{32} a^{16} + \frac{1}{16} a^{10} - \frac{1}{4} a^{7} - \frac{3}{32} a^{4} + \frac{1}{4} a$, $\frac{1}{32} a^{17} + \frac{1}{16} a^{11} - \frac{3}{32} a^{5}$, $\frac{1}{64} a^{18} - \frac{1}{64} a^{15} - \frac{1}{16} a^{14} + \frac{1}{32} a^{12} - \frac{1}{8} a^{10} + \frac{3}{32} a^{9} - \frac{1}{8} a^{8} + \frac{1}{8} a^{7} - \frac{11}{64} a^{6} + \frac{1}{8} a^{4} - \frac{5}{64} a^{3} + \frac{3}{16} a^{2} - \frac{1}{8} a + \frac{1}{8}$, $\frac{1}{64} a^{19} - \frac{1}{64} a^{16} + \frac{1}{32} a^{13} - \frac{1}{8} a^{11} + \frac{3}{32} a^{10} - \frac{1}{8} a^{8} - \frac{11}{64} a^{7} + \frac{1}{8} a^{5} - \frac{5}{64} a^{4} - \frac{1}{2} a^{3} + \frac{1}{8} a^{2} + \frac{1}{8} a - \frac{1}{2}$, $\frac{1}{64} a^{20} - \frac{1}{64} a^{17} + \frac{1}{32} a^{14} + \frac{3}{32} a^{11} + \frac{5}{64} a^{8} - \frac{5}{64} a^{5} - \frac{1}{8} a^{2}$, $\frac{1}{128} a^{21} + \frac{1}{128} a^{15} - \frac{1}{32} a^{14} - \frac{1}{16} a^{13} - \frac{1}{16} a^{12} - \frac{1}{8} a^{11} + \frac{11}{128} a^{9} + \frac{1}{16} a^{8} + \frac{1}{8} a^{7} + \frac{1}{8} a^{5} + \frac{51}{128} a^{3} - \frac{1}{32} a^{2} - \frac{1}{16} a - \frac{7}{16}$, $\frac{1}{256} a^{22} - \frac{1}{256} a^{21} - \frac{1}{64} a^{17} - \frac{3}{256} a^{16} + \frac{3}{256} a^{15} + \frac{3}{64} a^{14} + \frac{1}{32} a^{12} + \frac{3}{32} a^{11} - \frac{29}{256} a^{10} + \frac{29}{256} a^{9} - \frac{1}{32} a^{8} - \frac{3}{16} a^{7} - \frac{1}{4} a^{6} - \frac{5}{64} a^{5} - \frac{33}{256} a^{4} - \frac{95}{256} a^{3} - \frac{1}{64} a^{2} + \frac{7}{16} a + \frac{15}{32}$, $\frac{1}{4352} a^{23} + \frac{1}{4352} a^{22} - \frac{5}{2176} a^{21} + \frac{3}{544} a^{20} - \frac{7}{1088} a^{19} + \frac{3}{544} a^{18} - \frac{67}{4352} a^{17} + \frac{1}{256} a^{16} - \frac{1}{128} a^{15} - \frac{9}{544} a^{14} - \frac{15}{272} a^{13} + \frac{3}{136} a^{12} - \frac{189}{4352} a^{11} - \frac{117}{4352} a^{10} - \frac{239}{2176} a^{9} + \frac{39}{544} a^{8} + \frac{269}{1088} a^{7} + \frac{79}{544} a^{6} - \frac{577}{4352} a^{5} - \frac{733}{4352} a^{4} + \frac{581}{2176} a^{3} + \frac{231}{544} a^{2} - \frac{253}{544} a - \frac{87}{272}$, $\frac{1}{134912} a^{24} + \frac{13}{134912} a^{23} + \frac{35}{67456} a^{22} - \frac{235}{67456} a^{21} - \frac{95}{16864} a^{20} - \frac{39}{16864} a^{19} + \frac{29}{7936} a^{18} - \frac{1399}{134912} a^{17} + \frac{23}{3968} a^{16} + \frac{117}{67456} a^{15} + \frac{135}{8432} a^{14} + \frac{455}{8432} a^{13} + \frac{691}{134912} a^{12} - \frac{15577}{134912} a^{11} + \frac{1609}{67456} a^{10} - \frac{7217}{67456} a^{9} + \frac{2039}{16864} a^{8} - \frac{1911}{16864} a^{7} - \frac{239}{4352} a^{6} - \frac{17789}{134912} a^{5} - \frac{1267}{67456} a^{4} - \frac{825}{67456} a^{3} - \frac{3271}{8432} a^{2} + \frac{303}{1054} a + \frac{1761}{8432}$, $\frac{1}{539648} a^{25} + \frac{1}{539648} a^{24} + \frac{19}{269824} a^{23} + \frac{395}{539648} a^{22} - \frac{1103}{539648} a^{21} + \frac{311}{134912} a^{20} + \frac{45}{31744} a^{19} - \frac{123}{539648} a^{18} + \frac{415}{269824} a^{17} + \frac{863}{539648} a^{16} - \frac{3283}{539648} a^{15} + \frac{8391}{134912} a^{14} - \frac{23677}{539648} a^{13} - \frac{33045}{539648} a^{12} - \frac{9399}{269824} a^{11} + \frac{769}{31744} a^{10} + \frac{6403}{539648} a^{9} + \frac{5925}{134912} a^{8} - \frac{53105}{539648} a^{7} + \frac{103111}{539648} a^{6} - \frac{1979}{269824} a^{5} - \frac{51067}{539648} a^{4} + \frac{204831}{539648} a^{3} - \frac{3347}{7936} a^{2} + \frac{1255}{33728} a + \frac{32601}{67456}$, $\frac{1}{18255996954386381970253586769864394354559177863283014741479831000064} a^{26} + \frac{7890763687351371537457862927170324033346669217171864066332865}{9127998477193190985126793384932197177279588931641507370739915500032} a^{25} + \frac{34249733947455797235946119289248362168328290803796214678211431}{18255996954386381970253586769864394354559177863283014741479831000064} a^{24} - \frac{1734504584278516565693697787286563397180621459512742900339782379}{18255996954386381970253586769864394354559177863283014741479831000064} a^{23} + \frac{22046365039173917865540554428479638183973039665155136765529817}{2281999619298297746281698346233049294319897232910376842684978875008} a^{22} + \frac{48360198116681080457109028030260701149298967661155386382568522925}{18255996954386381970253586769864394354559177863283014741479831000064} a^{21} + \frac{99551735796253658585467789060625948593755121711140796691277365209}{18255996954386381970253586769864394354559177863283014741479831000064} a^{20} - \frac{35236695865022458530291914082237370341775133448284026194996660983}{9127998477193190985126793384932197177279588931641507370739915500032} a^{19} + \frac{77897082301786914094533814328937195593896538991223053274646853667}{18255996954386381970253586769864394354559177863283014741479831000064} a^{18} + \frac{245002854648605788775537987910807191983565545572907784534450290513}{18255996954386381970253586769864394354559177863283014741479831000064} a^{17} - \frac{19799177161705970628366141260522992197918377085904319399879591789}{2281999619298297746281698346233049294319897232910376842684978875008} a^{16} + \frac{11185157356092295425756635700450353501173696759328897977848471593}{18255996954386381970253586769864394354559177863283014741479831000064} a^{15} - \frac{168085732586088680026453751132758731251308024248725848542182748705}{18255996954386381970253586769864394354559177863283014741479831000064} a^{14} + \frac{405649254481841965834421789892830895245472630899687089779836643095}{9127998477193190985126793384932197177279588931641507370739915500032} a^{13} + \frac{8876641960182249920309486510763349379044464946845267230910484013}{1073882173787434233544328633521434962032892815487236161263519470592} a^{12} - \frac{1104840388245157320986904170246035013681217611491002979898771964017}{18255996954386381970253586769864394354559177863283014741479831000064} a^{11} + \frac{11169217583117905016465235212996000411287155605178985559855650515}{134235271723429279193041079190179370254111601935904520157939933824} a^{10} + \frac{738603314655675498415470332187161674310871388716977895718041016951}{18255996954386381970253586769864394354559177863283014741479831000064} a^{9} + \frac{2268479672559347009323662350445911949252755386934631738620914071907}{18255996954386381970253586769864394354559177863283014741479831000064} a^{8} - \frac{2265570274189874582295264404810744698372929284897555859672172834413}{9127998477193190985126793384932197177279588931641507370739915500032} a^{7} - \frac{2818022974148983600626246322162400338452846310572746515803652301647}{18255996954386381970253586769864394354559177863283014741479831000064} a^{6} + \frac{3786502078758917964993733252295597777899663744778516308285096389643}{18255996954386381970253586769864394354559177863283014741479831000064} a^{5} + \frac{78485024021221517039638323204203583618659081347296491595982178177}{2281999619298297746281698346233049294319897232910376842684978875008} a^{4} - \frac{1746491598996815684695521933880204043906581109463305658790178633165}{18255996954386381970253586769864394354559177863283014741479831000064} a^{3} - \frac{115875730189312570849401450819247814086984700307651483388141874119}{4563999238596595492563396692466098588639794465820753685369957750016} a^{2} + \frac{585787995369731399439545123947101573540982361046017030570048803635}{2281999619298297746281698346233049294319897232910376842684978875008} a + \frac{691166909515204696291588592073567606900634960874700382003276419433}{2281999619298297746281698346233049294319897232910376842684978875008}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 951820331630620.2 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 54 |
The 15 conjugacy class representatives for $D_{27}$ |
Character table for $D_{27}$ |
Intermediate fields
3.1.419.1, 9.1.30821664721.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | $27$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{3}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $27$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | $27$ | $27$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $27$ | $27$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{3}$ | $27$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $27$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
7 | Data not computed | ||||||
419 | Data not computed |