Normalized defining polynomial
\( x^{27} + 18 x^{25} - 54 x^{24} + 81 x^{23} - 729 x^{22} + 711 x^{21} - 2322 x^{20} + 7389 x^{19} - 646 x^{18} + 36288 x^{17} - 20349 x^{16} + 36072 x^{15} - 256311 x^{14} - 65700 x^{13} - 942516 x^{12} + 444744 x^{11} - 558486 x^{10} + 4867412 x^{9} + 1228689 x^{8} + 12312063 x^{7} - 3080772 x^{6} + 6516828 x^{5} - 31451760 x^{4} - 20430663 x^{3} - 52842915 x^{2} - 27379269 x - 39209779 \)
Invariants
Degree: | $27$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[1, 13]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-15576313507383139645975038414456506401400202794607\)\(\medspace = -\,3^{66}\cdot 23^{13}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $66.37$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $3, 23$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{5} a^{15} + \frac{2}{5} a^{14} - \frac{1}{5} a^{13} - \frac{2}{5} a^{12} + \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{1}{5} a^{6} - \frac{1}{5} a^{4} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{16} + \frac{1}{5} a^{11} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{17} + \frac{1}{5} a^{12} + \frac{2}{5} a^{10} + \frac{2}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{5} a^{18} + \frac{1}{5} a^{13} + \frac{2}{5} a^{11} + \frac{2}{5} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{35} a^{19} - \frac{3}{35} a^{16} + \frac{3}{35} a^{15} + \frac{1}{5} a^{14} - \frac{3}{35} a^{13} + \frac{6}{35} a^{12} + \frac{2}{35} a^{11} - \frac{3}{7} a^{9} + \frac{3}{7} a^{8} - \frac{11}{35} a^{7} - \frac{16}{35} a^{6} - \frac{9}{35} a^{5} + \frac{8}{35} a^{4} + \frac{9}{35} a^{3} - \frac{2}{5} a^{2} + \frac{3}{35} a + \frac{1}{5}$, $\frac{1}{805} a^{20} - \frac{1}{805} a^{19} - \frac{4}{115} a^{18} - \frac{9}{161} a^{17} - \frac{1}{805} a^{16} + \frac{39}{805} a^{15} + \frac{47}{161} a^{14} + \frac{156}{805} a^{13} - \frac{11}{805} a^{12} + \frac{57}{161} a^{11} - \frac{66}{161} a^{10} - \frac{306}{805} a^{9} - \frac{131}{805} a^{8} - \frac{71}{161} a^{7} - \frac{29}{115} a^{6} - \frac{26}{161} a^{5} + \frac{43}{805} a^{4} - \frac{20}{161} a^{3} - \frac{12}{161} a^{2} + \frac{9}{35} a$, $\frac{1}{4025} a^{21} - \frac{1}{4025} a^{20} + \frac{18}{4025} a^{19} - \frac{206}{4025} a^{18} - \frac{1}{4025} a^{17} - \frac{52}{805} a^{16} + \frac{373}{4025} a^{15} - \frac{1132}{4025} a^{14} - \frac{384}{805} a^{13} - \frac{1049}{4025} a^{12} - \frac{218}{575} a^{11} - \frac{1433}{4025} a^{10} + \frac{1916}{4025} a^{9} + \frac{389}{805} a^{8} + \frac{901}{4025} a^{7} - \frac{1671}{4025} a^{6} - \frac{29}{115} a^{5} + \frac{1073}{4025} a^{4} + \frac{837}{4025} a^{3} - \frac{33}{175} a^{2} - \frac{43}{175} a - \frac{7}{25}$, $\frac{1}{4025} a^{22} + \frac{2}{4025} a^{20} + \frac{57}{4025} a^{19} + \frac{213}{4025} a^{18} - \frac{17}{175} a^{17} + \frac{243}{4025} a^{16} + \frac{151}{4025} a^{15} + \frac{668}{4025} a^{14} + \frac{178}{575} a^{13} + \frac{116}{805} a^{12} - \frac{1139}{4025} a^{11} - \frac{1812}{4025} a^{10} + \frac{1781}{4025} a^{9} + \frac{211}{4025} a^{8} + \frac{83}{805} a^{7} + \frac{704}{4025} a^{6} + \frac{1548}{4025} a^{5} - \frac{1}{35} a^{4} + \frac{1233}{4025} a^{3} + \frac{762}{4025} a^{2} + \frac{13}{175} a - \frac{12}{25}$, $\frac{1}{4025} a^{23} - \frac{1}{4025} a^{20} + \frac{1}{575} a^{19} + \frac{13}{575} a^{18} - \frac{11}{161} a^{17} - \frac{27}{575} a^{16} + \frac{16}{575} a^{15} - \frac{347}{805} a^{14} - \frac{206}{805} a^{13} - \frac{1371}{4025} a^{12} - \frac{366}{805} a^{11} + \frac{297}{4025} a^{10} - \frac{1936}{4025} a^{9} - \frac{296}{805} a^{8} + \frac{997}{4025} a^{7} - \frac{197}{805} a^{6} - \frac{219}{805} a^{5} - \frac{503}{4025} a^{4} - \frac{1812}{4025} a^{3} - \frac{1023}{4025} a^{2} + \frac{27}{175} a - \frac{1}{25}$, $\frac{1}{20125} a^{24} - \frac{2}{20125} a^{23} - \frac{1}{20125} a^{22} + \frac{2}{20125} a^{21} - \frac{11}{20125} a^{20} + \frac{89}{20125} a^{19} + \frac{221}{2875} a^{18} + \frac{1424}{20125} a^{17} + \frac{156}{2875} a^{16} - \frac{771}{20125} a^{15} + \frac{4511}{20125} a^{14} + \frac{1003}{20125} a^{13} + \frac{758}{4025} a^{12} + \frac{7513}{20125} a^{11} + \frac{3153}{20125} a^{10} - \frac{6761}{20125} a^{9} - \frac{303}{875} a^{8} - \frac{28}{2875} a^{7} + \frac{4643}{20125} a^{6} + \frac{1459}{20125} a^{5} + \frac{499}{2875} a^{4} - \frac{5891}{20125} a^{3} - \frac{5107}{20125} a^{2} + \frac{257}{875} a - \frac{52}{125}$, $\frac{1}{35641375} a^{25} - \frac{382}{35641375} a^{24} + \frac{204}{35641375} a^{23} - \frac{118}{3240125} a^{22} + \frac{2804}{35641375} a^{21} - \frac{16011}{35641375} a^{20} - \frac{203743}{35641375} a^{19} - \frac{1072356}{35641375} a^{18} - \frac{1604098}{35641375} a^{17} + \frac{1938949}{35641375} a^{16} + \frac{918501}{35641375} a^{15} - \frac{2745892}{35641375} a^{14} - \frac{2105086}{7128275} a^{13} + \frac{340282}{727375} a^{12} + \frac{14542483}{35641375} a^{11} + \frac{15761274}{35641375} a^{10} + \frac{16301136}{35641375} a^{9} + \frac{660304}{3240125} a^{8} + \frac{11931463}{35641375} a^{7} + \frac{5242274}{35641375} a^{6} + \frac{1231278}{3240125} a^{5} + \frac{90059}{35641375} a^{4} + \frac{2272574}{5091625} a^{3} - \frac{5765049}{35641375} a^{2} + \frac{562676}{1549625} a - \frac{344}{1771}$, $\frac{1}{774681557419108141447990222823474682337706742013210215994090347510531213125} a^{26} - \frac{2994285130949080481298470102209709934590020311503722038228780652661}{774681557419108141447990222823474682337706742013210215994090347510531213125} a^{25} - \frac{54693232359571587890583308646871226550064120426990111968655839072758}{4142682125235872414160375523120185467046560117717701689807969772783589375} a^{24} - \frac{6069818662340573582241939653912048889853028210882165834946038484671023}{774681557419108141447990222823474682337706742013210215994090347510531213125} a^{23} - \frac{1056924767225413733137557501801803594599601490269448499961318309373684}{15809827702430778396897759649458666986483811061494086040695721377765943125} a^{22} + \frac{61724237326466643377483696667012268360761120817806193906727770202775497}{774681557419108141447990222823474682337706742013210215994090347510531213125} a^{21} + \frac{42651538813247639660106686585121499332611201046388059925772046316948074}{70425596129009831040726383893043152939791522001200928726735486137321019375} a^{20} - \frac{10277944853140501648909099217988758129816775641239894305189164075523186271}{774681557419108141447990222823474682337706742013210215994090347510531213125} a^{19} + \frac{14535207156975044543274627682816003095904070153740840332570114502032894184}{154936311483821628289598044564694936467541348402642043198818069502106242625} a^{18} + \frac{21161285923115163272639822763891946764545415959015943094494607973080883879}{774681557419108141447990222823474682337706742013210215994090347510531213125} a^{17} + \frac{6790261254344923834683194573753328616352356006434092600703660686640706144}{774681557419108141447990222823474682337706742013210215994090347510531213125} a^{16} - \frac{49634653480941327199453898604241935471250841269787920283275897294941564363}{774681557419108141447990222823474682337706742013210215994090347510531213125} a^{15} + \frac{10223185690621623351392461374810652878213222956341409401962129358824524}{70909067040650630796154711471256263829538374554984916795797743479224825} a^{14} - \frac{358990294257423086107477677900842920067654693030156482838870743877628242561}{774681557419108141447990222823474682337706742013210215994090347510531213125} a^{13} + \frac{242563093005337504186378878525589441648820473077182945233753751490869664086}{774681557419108141447990222823474682337706742013210215994090347510531213125} a^{12} + \frac{34073971608002648881876636486077930928006938131243237749057791653030800844}{110668793917015448778284317546210668905386677430458602284870049644361601875} a^{11} - \frac{276510733038849105962671339214867617549947350643171321481314114854274258184}{774681557419108141447990222823474682337706742013210215994090347510531213125} a^{10} - \frac{197774010280680555438326929727884494032031156659915135759733456383380095862}{774681557419108141447990222823474682337706742013210215994090347510531213125} a^{9} + \frac{44434851096930235280254554584209356359211674095153411676563039084919619404}{774681557419108141447990222823474682337706742013210215994090347510531213125} a^{8} + \frac{9228324011827677096119159832297208085705917226671117335706161754714527912}{154936311483821628289598044564694936467541348402642043198818069502106242625} a^{7} - \frac{387228908679598525449520581803349660559441543228652355190533374727147017482}{774681557419108141447990222823474682337706742013210215994090347510531213125} a^{6} - \frac{9916111488259249354377716558352773501093785146568136603667468312789012679}{154936311483821628289598044564694936467541348402642043198818069502106242625} a^{5} - \frac{357019502787736569263865078984598578339372569699934730537402597384610367437}{774681557419108141447990222823474682337706742013210215994090347510531213125} a^{4} + \frac{362394337897976044212789185388910023082625978124663616572751673551678380722}{774681557419108141447990222823474682337706742013210215994090347510531213125} a^{3} - \frac{1023640819120965782134872557576881958878030622728189275770996091643766587}{3161965540486155679379551929891733397296762212298817208139144275553188625} a^{2} - \frac{2892620801138110439194092482120523774220116845161473463140040830662272838}{6736361368861809925634697589769345063806145582723567095600785630526358375} a + \frac{119344576972247464178178882707676454952432857771934919668326421177576816}{4811686692044149946881926849835246474147246844802547925429132593233113125}$
Class group and class number
$C_{9}$, which has order $9$ (assuming GRH)
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 19566630112992.652 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 54 |
The 15 conjugacy class representatives for $D_{27}$ |
Character table for $D_{27}$ |
Intermediate fields
3.1.23.1, 9.1.148718980881.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $27$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $27$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | R | $27$ | $27$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $27$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $27$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
3 | Data not computed | ||||||
$23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |