Properties

Label 27.1.110...376.1
Degree $27$
Signature $[1, 13]$
Discriminant $-1.109\times 10^{53}$
Root discriminant \(92.18\)
Ramified primes see page
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_{27}$ (as 27T2392)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^27 + 4*x - 2)
 
gp: K = bnfinit(y^27 + 4*y - 2, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^27 + 4*x - 2);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 + 4*x - 2)
 

\( x^{27} + 4x - 2 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $27$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 13]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-110898821147724565210111275732773790428656805531877376\) \(\medspace = -\,2^{26}\cdot 7\cdot 211\cdot 277\cdot 9820621\cdot 41\!\cdots\!51\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(92.18\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{26/27}7^{1/2}211^{1/2}277^{1/2}9820621^{1/2}411289693845079379557406117008951^{1/2}\approx 7.924178643374103e+22$
Ramified primes:   \(2\), \(7\), \(211\), \(277\), \(9820621\), \(41128\!\cdots\!08951\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{-16525\!\cdots\!74659}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $13$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $5a^{26}+5a^{25}+4a^{24}+2a^{23}-3a^{21}-5a^{20}-6a^{19}-7a^{18}-6a^{17}-4a^{16}-2a^{15}+3a^{13}+5a^{12}+5a^{11}+7a^{10}+7a^{9}+5a^{8}+5a^{7}+3a^{6}-3a^{4}-6a^{3}-9a^{2}-12a+9$, $a^{26}+2a^{24}+a^{23}-4a^{22}-a^{20}+4a^{19}+2a^{18}-4a^{17}-a^{16}-3a^{15}+5a^{14}+3a^{13}-3a^{12}-6a^{10}+5a^{9}+2a^{8}-a^{7}+4a^{6}-9a^{5}+4a^{4}-2a^{3}+a^{2}+10a-5$, $3a^{26}+a^{25}+6a^{24}+a^{23}-3a^{22}-3a^{21}-7a^{20}+3a^{19}+11a^{17}-a^{16}+a^{15}-7a^{14}-8a^{13}+2a^{12}-a^{11}+14a^{10}-2a^{9}+9a^{8}-14a^{7}-5a^{6}-6a^{5}-a^{4}+18a^{3}+a^{2}+15a-11$, $3a^{26}-3a^{25}-2a^{24}+4a^{23}+2a^{22}-5a^{21}-a^{20}+4a^{19}+2a^{18}-5a^{17}-4a^{16}+8a^{15}+4a^{14}-10a^{13}-a^{12}+8a^{11}+2a^{10}-6a^{9}-9a^{8}+13a^{7}+5a^{6}-14a^{5}-a^{4}+12a^{3}+a^{2}-8a+3$, $a^{26}-5a^{25}-9a^{24}-8a^{23}-4a^{22}+2a^{21}+6a^{20}+5a^{19}-a^{18}-8a^{17}-8a^{16}-2a^{15}+6a^{14}+12a^{13}+12a^{12}+7a^{11}-3a^{10}-8a^{9}-2a^{8}+9a^{7}+19a^{6}+19a^{5}+13a^{4}+2a^{3}-10a^{2}-8a+9$, $11a^{26}+9a^{25}-4a^{24}+12a^{23}-13a^{22}-7a^{20}-20a^{19}+4a^{18}-26a^{17}+2a^{16}-6a^{15}-13a^{14}+22a^{13}-18a^{12}+25a^{11}+3a^{10}-4a^{9}+31a^{8}-32a^{7}+25a^{6}-22a^{5}-23a^{4}+15a^{3}-64a^{2}+26a+3$, $61a^{26}+17a^{25}-62a^{24}-48a^{23}+46a^{22}+75a^{21}-17a^{20}-93a^{19}-25a^{18}+91a^{17}+71a^{16}-68a^{15}-112a^{14}+24a^{13}+135a^{12}+39a^{11}-131a^{10}-104a^{9}+98a^{8}+160a^{7}-33a^{6}-193a^{5}-54a^{4}+190a^{3}+144a^{2}-144a+15$, $a^{26}+a^{25}+a^{24}-a^{23}+a^{19}+a^{18}-a^{17}-a^{14}+a^{13}+a^{12}+a^{9}-2a^{8}+a^{7}-a^{4}+3a^{3}-2a^{2}+3$, $3a^{26}+2a^{25}-7a^{24}-3a^{23}+9a^{22}+a^{21}-3a^{20}-4a^{19}-4a^{18}+14a^{17}+a^{16}-13a^{15}+3a^{14}+10a^{12}+4a^{11}-21a^{10}+6a^{9}+11a^{8}+4a^{6}-20a^{5}+a^{4}+26a^{3}-6a^{2}-11a+5$, $12a^{26}-3a^{25}+3a^{24}+2a^{23}-19a^{22}+28a^{21}-14a^{20}-4a^{19}+7a^{18}-12a^{17}+30a^{16}-37a^{15}+10a^{14}+20a^{13}-26a^{12}+24a^{11}-40a^{10}+39a^{9}+3a^{8}-51a^{7}+52a^{6}-36a^{5}+38a^{4}-30a^{3}-33a^{2}+94a-37$, $11a^{26}+9a^{25}+7a^{24}-a^{21}-7a^{20}-4a^{19}-10a^{18}-12a^{17}-5a^{16}-5a^{15}+a^{14}+6a^{13}+a^{12}+10a^{11}+11a^{10}+9a^{9}+17a^{8}+4a^{7}-3a^{6}+2a^{5}-10a^{4}-7a^{3}-5a^{2}-24a+33$, $32a^{26}+15a^{25}+3a^{24}+5a^{23}+5a^{22}-3a^{21}-a^{20}+6a^{19}-5a^{17}+4a^{16}+3a^{15}-7a^{14}-3a^{13}+8a^{12}-4a^{11}-6a^{10}+8a^{9}+5a^{8}-9a^{7}+12a^{5}-8a^{4}-10a^{3}+13a^{2}+2a+113$, $3a^{26}-24a^{25}-35a^{24}-21a^{23}+11a^{22}+37a^{21}+39a^{20}+13a^{19}-26a^{18}-48a^{17}-37a^{16}+2a^{15}+44a^{14}+57a^{13}+30a^{12}-21a^{11}-62a^{10}-60a^{9}-13a^{8}+46a^{7}+79a^{6}+57a^{5}-12a^{4}-74a^{3}-89a^{2}-42a+57$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 15404318055100588 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{13}\cdot 15404318055100588 \cdot 1}{2\cdot\sqrt{110898821147724565210111275732773790428656805531877376}}\cr\approx \mathstrut & 1.10031567727311 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^27 + 4*x - 2)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^27 + 4*x - 2, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^27 + 4*x - 2);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 + 4*x - 2);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{27}$ (as 27T2392):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 10888869450418352160768000000
The 3010 conjugacy class representatives for $S_{27}$ are not computed
Character table for $S_{27}$ is not computed

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.6.0.1}{6} }^{4}{,}\,{\href{/padicField/3.2.0.1}{2} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ $27$ R ${\href{/padicField/11.12.0.1}{12} }{,}\,{\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.5.0.1}{5} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ $19{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ $15{,}\,{\href{/padicField/17.9.0.1}{9} }{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.12.0.1}{12} }{,}\,{\href{/padicField/19.10.0.1}{10} }{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.13.0.1}{13} }{,}\,{\href{/padicField/23.11.0.1}{11} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{3}$ ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.7.0.1}{7} }{,}\,{\href{/padicField/29.5.0.1}{5} }{,}\,{\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ $16{,}\,{\href{/padicField/31.9.0.1}{9} }{,}\,{\href{/padicField/31.2.0.1}{2} }$ $24{,}\,{\href{/padicField/37.3.0.1}{3} }$ ${\href{/padicField/41.11.0.1}{11} }{,}\,{\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }$ $17{,}\,{\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ $16{,}\,{\href{/padicField/47.3.0.1}{3} }^{3}{,}\,{\href{/padicField/47.2.0.1}{2} }$ $17{,}\,{\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ $17{,}\,{\href{/padicField/59.9.0.1}{9} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $27$$27$$1$$26$
\(7\) Copy content Toggle raw display $\Q_{7}$$x + 4$$1$$1$$0$Trivial$[\ ]$
7.2.1.1$x^{2} + 21$$2$$1$$1$$C_2$$[\ ]_{2}$
7.5.0.1$x^{5} + x + 4$$1$$5$$0$$C_5$$[\ ]^{5}$
7.7.0.1$x^{7} + 6 x + 4$$1$$7$$0$$C_7$$[\ ]^{7}$
7.12.0.1$x^{12} + 2 x^{8} + 5 x^{7} + 3 x^{6} + 2 x^{5} + 4 x^{4} + 5 x^{2} + 3$$1$$12$$0$$C_{12}$$[\ ]^{12}$
\(211\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $5$$1$$5$$0$$C_5$$[\ ]^{5}$
Deg $17$$1$$17$$0$$C_{17}$$[\ ]^{17}$
\(277\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $7$$1$$7$$0$$C_7$$[\ ]^{7}$
Deg $15$$1$$15$$0$$C_{15}$$[\ ]^{15}$
\(9820621\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $21$$1$$21$$0$$C_{21}$$[\ ]^{21}$
\(411\!\cdots\!951\) Copy content Toggle raw display $\Q_{41\!\cdots\!51}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $5$$1$$5$$0$$C_5$$[\ ]^{5}$
Deg $19$$1$$19$$0$$C_{19}$$[\ ]^{19}$