// Magma code for working with number field 27.1.1089801024238603052304820653163822019730224609375.1 // (Note that not all these functions may be available, and some may take a long time to execute.) // Define the number field: R := PolynomialRing(Rationals()); K := NumberField(R![-295863625, 805097125, -594053575, -148040525, 140246505, 340132420, -318855243, 72314518, -40765921, 51530498, -6594753, -6208737, -7065937, 8285833, -2894444, 384139, 101476, -88324, -5214, 27792, -11487, 1817, 272, -318, 79, 11, -8, 1]); // Defining polynomial: DefiningPolynomial(K); // Degree over Q: Degree(K); // Signature: Signature(K); // Discriminant: Discriminant(Integers(K)); // Ramified primes: PrimeDivisors(Discriminant(Integers(K))); // Integral basis: IntegralBasis(K); // Class group: ClassGroup(K); // Unit group: UK, f := UnitGroup(K); // Unit rank: UnitRank(K); // Generator for roots of unity: K!f(TU.1) where TU,f is TorsionUnitGroup(K); // Fundamental units: [K!f(g): g in Generators(UK)]; // Regulator: Regulator(K); // Galois group: GaloisGroup(K); // Frobenius cycle types: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$: idealfactors := Factorization(p*Integers(K)); // get the data [ : primefactor in idealfactors];